找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advanced Optical Methods for Brain Imaging; Fu-Jen Kao,Gerd Keiser,Ankur Gogoi Book 2019 Springer Nature Singapore Pte Ltd. 2019 Superreso

[復(fù)制鏈接]
樓主: Auditory-Nerve
31#
發(fā)表于 2025-3-26 23:35:05 | 只看該作者
32#
發(fā)表于 2025-3-27 03:05:31 | 只看該作者
Multiscale and Multimodal Imaging for Connectomicsce of our knowledge about the physical laws of nature, ranging from the seventeenth century geometrical optics up to the twentieth century theory of general relativity and quantum electrodynamics. Folklore Don’t give us numbers: give us insight! A contemporary natural scientist to a mathematician Th
33#
發(fā)表于 2025-3-27 07:19:31 | 只看該作者
34#
發(fā)表于 2025-3-27 09:42:37 | 只看該作者
Optical Coherence Tomography for Brain Imagingework.Gives overview of present state of the art.Includes su.One of the most challenging problems of contemporary theoretical physics is the mathematically rigorous construction of a theory which describes gravitation and the other fundamental physical interactions within a common framework. The phy
35#
發(fā)表于 2025-3-27 15:44:49 | 只看該作者
Light-Sheet Microscopy for Whole-Brain Imaginghey include a solution of the original interacting quantum field equations and a description of the physics which these equations contain. Quantum fields were proposed in the late 1920s as the natural framework which combines quantum theory with relativ- ity. They have survived ever since. The mathe
36#
發(fā)表于 2025-3-27 18:08:18 | 只看該作者
The Airyscan Detector: Confocal Microscopy Evolution for the Neurosciencesd endomorphisms that leave the unit fixed. We use this idea to study automorphisms of ... The group Aut .. is shown to contain a maximal abelian subgroup T (that is canonically associated with the construction of .. from a topological Markov.chain; cf. the paper by W. Krieger and the author: A class
37#
發(fā)表于 2025-3-28 01:15:05 | 只看該作者
38#
發(fā)表于 2025-3-28 02:46:28 | 只看該作者
39#
發(fā)表于 2025-3-28 08:44:38 | 只看該作者
40#
發(fā)表于 2025-3-28 11:59:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 03:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大兴区| 建水县| 金川县| 垣曲县| 营山县| 增城市| 黄山市| 萝北县| 修文县| 张家川| 唐河县| 永兴县| 屯昌县| 剑河县| 大化| 三原县| 万盛区| 阿勒泰市| 大宁县| 东乡族自治县| 广东省| 九江市| 定南县| 曲阳县| 酒泉市| 松潘县| 鹰潭市| 克拉玛依市| 永州市| 泾源县| 常德市| 陈巴尔虎旗| 白河县| 宁波市| 张掖市| 乌兰察布市| 营口市| 怀宁县| 茌平县| 县级市| 鹤庆县|