找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advanced Machine Learning Approaches in Cancer Prognosis; Challenges and Appli Janmenjoy Nayak,Margarita N. Favorskaya,Manohar Mi Book 2021

[復(fù)制鏈接]
查看: 36595|回復(fù): 54
樓主
發(fā)表于 2025-3-21 18:39:55 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Advanced Machine Learning Approaches in Cancer Prognosis
期刊簡(jiǎn)稱Challenges and Appli
影響因子2023Janmenjoy Nayak,Margarita N. Favorskaya,Manohar Mi
視頻videohttp://file.papertrans.cn/146/145838/145838.mp4
發(fā)行地址Discusses all types of cancer diseases information with their detection, solution, and prevention.Presents advanced machine learning approaches spanning the areas of neural networks, fuzzy logic, conn
學(xué)科分類Intelligent Systems Reference Library
圖書(shū)封面Titlebook: Advanced Machine Learning Approaches in Cancer Prognosis; Challenges and Appli Janmenjoy Nayak,Margarita N. Favorskaya,Manohar Mi Book 2021
影響因子.This book introduces a variety of advanced machine learning approaches covering the areas of neural networks, fuzzy logic,?and hybrid intelligent systems for the determination and diagnosis of cancer. Moreover, the tactical solutions of machine learning?have?proved its vast range of significance and,?provided novel solutions in the medical field for the diagnosis of disease. This book also explores the distinct deep learning approaches that are capable of yielding more accurate outcomes for the diagnosis of cancer. In addition to providing an overview of the emerging machine and deep learning approaches, it also enlightens an insight on how to evaluate the efficiency and appropriateness of such techniques and analysis of cancer data used in the cancer diagnosis. Therefore, this book focuses on the recent advancements in the machine learning and deep learning approaches used in the diagnosis of different types of cancer along with their research challenges and future directions for the targeted audience including scientists, experts, Ph.D.?students, postdocs, and anyone interested in the subjects discussed. ?.
Pindex Book 2021
The information of publication is updating

書(shū)目名稱Advanced Machine Learning Approaches in Cancer Prognosis影響因子(影響力)




書(shū)目名稱Advanced Machine Learning Approaches in Cancer Prognosis影響因子(影響力)學(xué)科排名




書(shū)目名稱Advanced Machine Learning Approaches in Cancer Prognosis網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Advanced Machine Learning Approaches in Cancer Prognosis網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Advanced Machine Learning Approaches in Cancer Prognosis被引頻次




書(shū)目名稱Advanced Machine Learning Approaches in Cancer Prognosis被引頻次學(xué)科排名




書(shū)目名稱Advanced Machine Learning Approaches in Cancer Prognosis年度引用




書(shū)目名稱Advanced Machine Learning Approaches in Cancer Prognosis年度引用學(xué)科排名




書(shū)目名稱Advanced Machine Learning Approaches in Cancer Prognosis讀者反饋




書(shū)目名稱Advanced Machine Learning Approaches in Cancer Prognosis讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:12:56 | 只看該作者
Lecture Notes in Computer Sciencesing short-breaths will be the ease of usage and compatibility of the network. The prediction can lead to earliest diagnosis possible when the concerned person identifies unusual breathing habits. The prediction can also propose other tests to be done if required. The creation of networks for both w
板凳
發(fā)表于 2025-3-22 01:53:25 | 只看該作者
Lecture Notes in Computer Scienced pathological observations of the thyroid disease were also surveyed. The forty-two machine learning algorithms are compared to find the top five best classifiers to predict whether a given patient is suffering from hypothyroidism, hyperthyroidism or is absolute normal. The data source has been tak
地板
發(fā)表于 2025-3-22 05:24:48 | 只看該作者
Bryan Pauken,Mudit Pradyumn,Nasseh Tabriziared with large collection of databases with the replacement of sigmoid activation function. Probabilistic neural network is used to describe nonlinear statement limits which further leads to Bayes optimal and also all the function which bear same properties as well. Any input data or algorithm can
5#
發(fā)表于 2025-3-22 11:02:22 | 只看該作者
6#
發(fā)表于 2025-3-22 13:09:04 | 只看該作者
7#
發(fā)表于 2025-3-22 18:36:48 | 只看該作者
8#
發(fā)表于 2025-3-22 23:46:02 | 只看該作者
9#
發(fā)表于 2025-3-23 04:12:01 | 只看該作者
https://doi.org/10.1007/978-3-030-96282-1G16, EfficientNet, Dense Net121, ResNext50 in the large-scale cancer image data classification setting. Our main contribution is to focus on the high-level accuracy because these deep learning algorithms have the capability of transfer learning with image instant segmentation.
10#
發(fā)表于 2025-3-23 06:59:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 12:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
师宗县| 吉水县| 万宁市| 巢湖市| 鹤山市| 龙州县| 抚顺市| 华容县| 武胜县| 三穗县| 福海县| 孟村| 新蔡县| 大埔区| 勃利县| 衡阳县| 紫金县| 长顺县| 陆河县| 衡东县| 扎兰屯市| 河北省| 托克逊县| 会东县| 高平市| 册亨县| 罗甸县| 青阳县| 龙江县| 韩城市| 赣榆县| 开平市| 朔州市| 沂水县| 大新县| 深州市| 思南县| 乌拉特前旗| 顺义区| 疏勒县| 襄垣县|