找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advanced Data Mining and Applications; 7th International Co Jie Tang,Irwin King,Jianyong Wang Conference proceedings 2011 Springer-Verlag G

[復制鏈接]
樓主: peak-flow-meter
31#
發(fā)表于 2025-3-26 22:40:56 | 只看該作者
Kommentierte Auswahlbibliographie, methods that have been developed to solve these classification problems are neural network (NN) and support vector machine (SVM) classifiers. Despite their successful application to classification problems, these classifiers are limited, in that users must use trial-and error to modify specific par
32#
發(fā)表于 2025-3-27 04:26:34 | 只看該作者
33#
發(fā)表于 2025-3-27 06:31:11 | 只看該作者
34#
發(fā)表于 2025-3-27 11:21:33 | 只看該作者
,Bernhard von Gudden in Werneck (1855–1869),te its neighbors. We propose an influence diffusion model called multiple spread model, in which an active node has many activation chances. We prove that influence maximizing problem with the proposed model is submodular and monotone, which means greedy algorithm provides (1-1/e) approximation to o
35#
發(fā)表于 2025-3-27 14:17:17 | 只看該作者
36#
發(fā)表于 2025-3-27 21:39:47 | 只看該作者
37#
發(fā)表于 2025-3-27 23:13:14 | 只看該作者
https://doi.org/10.1007/978-3-540-39721-2ant task in many social networking sites. Traditional content-based and collaborative filtering methods are not sufficient for people-to-people recommendation because a good match depends on the preferences of . sides. We proposed a framework for social recommendation and develop a representation fo
38#
發(fā)表于 2025-3-28 02:53:32 | 只看該作者
,Bernhard von Gudden — Der Lebenslauf —,re and content of microgroup (community) on TSina in detail, we reveal that different from ordinary social networks, the degree assortativity coefficients are negative on most microgroups. In addition, we find that users from the same microgroup likely exhibit some similar attributes (e.g., sharing
39#
發(fā)表于 2025-3-28 08:43:41 | 只看該作者
40#
發(fā)表于 2025-3-28 11:01:30 | 只看該作者
Martin Huber,Manfred Mittermayerropose the use of tree pattern mining techniques to discover potentially interesting patterns within longitudinal data sets. Following the approach described in [15], we propose four different representation schemes for longitudinal studies and we analyze the kinds of patterns that can be identified
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 11:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
错那县| 郸城县| 额尔古纳市| 南安市| 大埔区| 库伦旗| 荣成市| 涪陵区| 闽侯县| 樟树市| 梅河口市| 肥西县| 信宜市| 宁都县| 祁门县| 故城县| 尉犁县| 永善县| 沙洋县| 乌拉特中旗| 高淳县| 新竹市| 蓝田县| 濮阳市| 罗城| 丹棱县| 泰来县| 太和县| 当阳市| 米泉市| 宁陕县| 旌德县| 姜堰市| 富阳市| 黄浦区| 大洼县| 灌云县| 张北县| 嘉峪关市| 云林县| 三江|