找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advanced Computing; 12th International C Deepak Garg,V. A. Narayana,Suneet Kumar Gupta Conference proceedings 2023 Springer Nature Switzerl

[復制鏈接]
樓主: 動詞
51#
發(fā)表于 2025-3-30 08:39:07 | 只看該作者
52#
發(fā)表于 2025-3-30 16:26:17 | 只看該作者
53#
發(fā)表于 2025-3-30 20:12:45 | 只看該作者
https://doi.org/10.1007/978-3-663-14484-7ectral clustering from which the optimal l eigen values are identified as optimal cluster centers for imputation. The imputation is done using this reduced optimal non-missing dataset. The imputed dataset is evaluated by comparing the accuracies of classifiers like SVM, C4.5, NB and kNN. Proposed me
54#
發(fā)表于 2025-3-30 20:46:01 | 只看該作者
Wohlfahrtsma?e für ein WirtschaftssubjektThe DR-A-LSTM model was compared with the simple LSTM and PCA-LSTM models to predict landslide movements. The data was split in the 80:20 ratio to train and test the ML models. The simple LSTM model produced 82.3% accuracy in the training data and 71.8% in the testing data. The simple LSTM model sho
55#
發(fā)表于 2025-3-31 01:43:53 | 只看該作者
Wohlfahrtsma?e für ein Wirtschaftssubjekts Independent Component Analysis and Principal Component Analysis to accomplish the above task. In addition to being more accurate than the state-of-the-art, the proposed model yields an accuracy of 87% with only 714 features.
56#
發(fā)表于 2025-3-31 08:48:19 | 只看該作者
Hickssche Ma?e und Paretokriteriumst with 0.012 RMSE, and the univariate MLP was the second-best model with 0.013 RMSE. The analysis of the results shows that ensemble MLP is a promising method that can be used for landslide prediction using movement data.
57#
發(fā)表于 2025-3-31 12:39:42 | 只看該作者
https://doi.org/10.1007/978-3-642-83272-7hod or tools for founding outliers in the data set, outlier affects the mean, variance and standard deviation, outliers are reducing the power of statistical tests, they can decrease normality of data set. In this paper we used hierarchical clustering technique to find out the global outlier. In hie
58#
發(fā)表于 2025-3-31 13:20:14 | 只看該作者
Wohlfahrtsma?e für ein Wirtschaftssubjekt proposed method was compared with other state-of-the-art techniques in unsupervised learning for categorical data such as: k-means, Mkm-nof, weighted dissimilarity, Mkm-ndm and structure-based clustering (SBC) algorithms; evaluated the accuracy (AC), adjusted rand index (ARI) and normalized mutual
59#
發(fā)表于 2025-3-31 19:22:56 | 只看該作者
Studies in Contemporary Economicsrs, and an output layer. The proposed DNN model with the same hyperparameters values performed well over the CICDDoS 2019 and PVAMUDDoS-2020 datasets with all features and reduced features. The results are comparable in both cases and the evaluation with reduced features shows less training and test
60#
發(fā)表于 2025-4-1 00:17:34 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 13:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
尉氏县| 育儿| 靖宇县| 湖北省| 武功县| 遂溪县| 青河县| 毕节市| 突泉县| 绩溪县| 边坝县| 石柱| 清原| 吉木萨尔县| 前郭尔| 瑞丽市| 长武县| 全椒县| 吉林市| 东乌珠穆沁旗| 垦利县| 全南县| 洪泽县| 霍州市| 楚雄市| 桂林市| 泊头市| 峨眉山市| 桂阳县| 庆云县| 饶阳县| 高要市| 西青区| 聊城市| 沅陵县| 正阳县| 古蔺县| 榆林市| 伊春市| 云和县| 宁海县|