找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advanced Applied Deep Learning; Convolutional Neural Umberto Michelucci Book 2019 Umberto Michelucci 2019 Deep Learning.Python.TensorFlow.K

[復(fù)制鏈接]
查看: 16919|回復(fù): 45
樓主
發(fā)表于 2025-3-21 18:58:26 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Advanced Applied Deep Learning
期刊簡稱Convolutional Neural
影響因子2023Umberto Michelucci
視頻videohttp://file.papertrans.cn/146/145243/145243.mp4
發(fā)行地址The first book with extensive examples of advanced deep learning techniques including CNN.Uses real-life datasets in the application of advanced techniques.Guides you from easier examples to more adva
圖書封面Titlebook: Advanced Applied Deep Learning; Convolutional Neural Umberto Michelucci Book 2019 Umberto Michelucci 2019 Deep Learning.Python.TensorFlow.K
影響因子.Develop and optimize deep learning models with advanced architectures. This book teaches you the intricate details and subtleties of the algorithms that are at the core of convolutional neural networks. In .Advanced Applied Deep Learning., you will study advanced topics on CNN and object detection using Keras and TensorFlow.?.Along the way, you will look at the fundamental operations in CNN, such as convolution and pooling, and then look at more advanced architectures such as inception networks, resnets, and many more. While the book discusses theoretical topics, you will discover how to work efficiently with Keras with many tricks and tips, including how to customize logging in Keras with custom callback classes, what is eager execution, and how to use it in your models. .Finally, you will study how object detection works, and build a complete implementation of the YOLO (you only look once) algorithm in Keras and TensorFlow. By the end of the book you will have implemented various models in Keras and learned many advanced tricks that will bring your skills to the next level..What You Will Learn..See how convolutional neural networks and object detection work.Save weights and mode
Pindex Book 2019
The information of publication is updating

書目名稱Advanced Applied Deep Learning影響因子(影響力)




書目名稱Advanced Applied Deep Learning影響因子(影響力)學(xué)科排名




書目名稱Advanced Applied Deep Learning網(wǎng)絡(luò)公開度




書目名稱Advanced Applied Deep Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Advanced Applied Deep Learning被引頻次




書目名稱Advanced Applied Deep Learning被引頻次學(xué)科排名




書目名稱Advanced Applied Deep Learning年度引用




書目名稱Advanced Applied Deep Learning年度引用學(xué)科排名




書目名稱Advanced Applied Deep Learning讀者反饋




書目名稱Advanced Applied Deep Learning讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:35:52 | 只看該作者
Beginning iPhone and iPad Web Appsften, especially in transfer learning and image recognition), and finally how to save and restore models already trained. Those technical skills will be very useful, not only to study this book, but in real-life research projects.
板凳
發(fā)表于 2025-3-22 02:57:46 | 只看該作者
地板
發(fā)表于 2025-3-22 05:53:33 | 只看該作者
5#
發(fā)表于 2025-3-22 09:40:44 | 只看該作者
6#
發(fā)表于 2025-3-22 14:16:21 | 只看該作者
https://doi.org/10.1007/978-1-4302-3046-5MSE can be interpreted in a statistical sense, as well as how cross-entropy is related to information theory. Then, to give you an example of a much more advanced use of special loss functions, we will learn how to do neural style transfer, where we will discuss a neural network to paint in the style of famous painters.
7#
發(fā)表于 2025-3-22 18:41:30 | 只看該作者
8#
發(fā)表于 2025-3-23 00:49:27 | 只看該作者
Introduction and Development Environment Setup,lor-Studierende.bietet eine verzahnte Darstellung von analyt.Dieses Lehrbuch gibt eine Einführung in die partiellen Differenzialgleichungen. Wir beginnen mit einigen ganz konkreten Beispielen aus den Natur-, Ingenieur und Wirtschaftswissenschaften. Danach werden elementare L?sungsmethoden dargestell
9#
發(fā)表于 2025-3-23 05:24:24 | 只看該作者
10#
發(fā)表于 2025-3-23 06:34:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 13:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
眉山市| 从江县| 雷州市| 泸水县| 兰溪市| 铜陵市| 蓬安县| 醴陵市| 登封市| 元江| 旬邑县| 湖北省| 闻喜县| 五家渠市| 永定县| 遂溪县| 班戈县| 南皮县| 进贤县| 铜梁县| 东城区| 石首市| 长垣县| 镇平县| 河南省| 卢氏县| 钟祥市| 金门县| 郓城县| 延寿县| 仙居县| 南安市| 治县。| 磴口县| 满洲里市| 郓城县| 武邑县| 鹿泉市| 平利县| 彰武县| 札达县|