找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Adaptive Learning of Polynomial Networks; Genetic Programming, Nikolay Y. Nikolaev,Hitoshi Iba Book 2006 Springer-Verlag US 2006 Bayesian i

[復(fù)制鏈接]
查看: 29540|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:10:34 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Adaptive Learning of Polynomial Networks
期刊簡稱Genetic Programming,
影響因子2023Nikolay Y. Nikolaev,Hitoshi Iba
視頻videohttp://file.papertrans.cn/145/144682/144682.mp4
發(fā)行地址Offers a shift in focus from the standard linear models toward highly nonlinear models that can be inferred by contemporary learning approaches.Presents alternative probabilistic search algorithms tha
學(xué)科分類Genetic and Evolutionary Computation
圖書封面Titlebook: Adaptive Learning of Polynomial Networks; Genetic Programming, Nikolay Y. Nikolaev,Hitoshi Iba Book 2006 Springer-Verlag US 2006 Bayesian i
影響因子This book provides theoretical and practical knowledge for develop- ment of algorithms that infer linear and nonlinear models. It offers a methodology for inductive learning of polynomial neural network mod- els from data. The design of such tools contributes to better statistical data modelling when addressing tasks from various areas like system identification, chaotic time-series prediction, financial forecasting and data mining. The main claim is that the model identification process involves several equally important steps: finding the model structure, estimating the model weight parameters, and tuning these weights with respect to the adopted assumptions about the underlying data distrib- ution. When the learning process is organized according to these steps, performed together one after the other or separately, one may expect to discover models that generalize well (that is, predict well). The book off‘ers statisticians a shift in focus from the standard f- ear models toward highly nonlinear models that can be found by con- temporary learning approaches. Speciafists in statistical learning will read about alternative probabilistic search algorithms that discover the model ar
Pindex Book 2006
The information of publication is updating

書目名稱Adaptive Learning of Polynomial Networks影響因子(影響力)




書目名稱Adaptive Learning of Polynomial Networks影響因子(影響力)學(xué)科排名




書目名稱Adaptive Learning of Polynomial Networks網(wǎng)絡(luò)公開度




書目名稱Adaptive Learning of Polynomial Networks網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Adaptive Learning of Polynomial Networks被引頻次




書目名稱Adaptive Learning of Polynomial Networks被引頻次學(xué)科排名




書目名稱Adaptive Learning of Polynomial Networks年度引用




書目名稱Adaptive Learning of Polynomial Networks年度引用學(xué)科排名




書目名稱Adaptive Learning of Polynomial Networks讀者反饋




書目名稱Adaptive Learning of Polynomial Networks讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:08:59 | 只看該作者
Book 2006 for inductive learning of polynomial neural network mod- els from data. The design of such tools contributes to better statistical data modelling when addressing tasks from various areas like system identification, chaotic time-series prediction, financial forecasting and data mining. The main clai
板凳
發(fā)表于 2025-3-22 04:13:00 | 只看該作者
地板
發(fā)表于 2025-3-22 05:56:04 | 只看該作者
5#
發(fā)表于 2025-3-22 09:04:41 | 只看該作者
Time Series Modelling,m to be helpful to both novices and veterans. As a result, I added the descriptions for most reactions. Finally, I am grateful for permission to use the postage stamps on the inner covers from respective postal authorities, who still retail the copyrights of those stamps. Jack Li Ann Arbor, Michigan
6#
發(fā)表于 2025-3-22 13:23:55 | 只看該作者
7#
發(fā)表于 2025-3-22 18:49:05 | 只看該作者
8#
發(fā)表于 2025-3-23 01:12:15 | 只看該作者
Conclusions, history underlying certain named reactions, it is the students of organic chemistry who benefit the most from the cataloging of reactions by name. Indeed, it is with education in mind that Dr. Jack Li has mast978-3-642-01053-8
9#
發(fā)表于 2025-3-23 05:10:00 | 只看該作者
10#
發(fā)表于 2025-3-23 08:04:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 08:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长子县| 东丽区| 兴安县| 石泉县| 镇宁| 定日县| 济阳县| 宿迁市| 麦盖提县| 平遥县| 塔河县| 九江县| 福建省| 会理县| 杭锦后旗| 桂阳县| 四会市| 武穴市| 旌德县| 隆回县| 个旧市| 大姚县| 苍梧县| 珲春市| 定陶县| 准格尔旗| 班玛县| 胶南市| 大渡口区| 泰安市| 涞水县| 彭州市| 泾源县| 抚松县| 芦山县| 迭部县| 肇州县| 遂川县| 扎囊县| 边坝县| 乌兰浩特市|