找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Adaptive Dynamic Programming: Single and Multiple Controllers; Ruizhuo Song,Qinglai Wei,Qing Li Book 2019 Science Press, Beijing and Sprin

[復(fù)制鏈接]
樓主: 拼圖游戲
31#
發(fā)表于 2025-3-27 00:44:47 | 只看該作者
https://doi.org/10.1007/978-981-13-1712-5Optimal control; Multi-player games; Adaptive dynamic programming; Nonlinear systems; Neural network-bas
32#
發(fā)表于 2025-3-27 04:17:07 | 只看該作者
33#
發(fā)表于 2025-3-27 06:22:11 | 只看該作者
34#
發(fā)表于 2025-3-27 12:37:46 | 只看該作者
35#
發(fā)表于 2025-3-27 16:48:45 | 只看該作者
https://doi.org/10.1007/978-3-031-46375-4he weighted sum technology, the original multi-objective optimal control problem is transformed to the single one. An ADP method is established for nonlinear time-delay systems to solve the optimal control problem. To demonstrate the presented iterative performance index function sequence is converg
36#
發(fā)表于 2025-3-27 21:13:06 | 只看該作者
https://doi.org/10.1007/978-3-031-46375-4tuation, this chapter proposes multiple actor-critic structures to obtain the optimal control via input-output data for unknown nonlinear systems. The shunting inhibitory artificial neural network (SIANN) is used to classify the input-output data into one of several categories. Different performance
37#
發(fā)表于 2025-3-28 00:38:59 | 只看該作者
38#
發(fā)表于 2025-3-28 05:04:04 | 只看該作者
Polyphony: Authorship and Power,obi–Bellman (HJB) equation. Off-policy learning allows the iterative performance index and iterative control to be obtained by completely unknown dynamics. Critic and action networks are used to get the iterative control and iterative performance index, which execute policy evaluation and policy imp
39#
發(fā)表于 2025-3-28 06:18:39 | 只看該作者
Lakshmi Bandlamudi,E. V. Ramakrishnangorithm. Via the system transformation, the optimal tracking problem is transformed into an optimal regulation problem, and then the novel optimal tracking control method is proposed. It is shown that for the iterative ADP algorithm with finite approximation error, the iterative performance index fu
40#
發(fā)表于 2025-3-28 14:23:37 | 只看該作者
Bakhtinian Explorations of Indian Cultureing (IRL) algorithm is presented to obtain the iterative control. Off-policy learning is used to allow the dynamics to be completely unknown. Neural networks (NN) are used to construct critic and action networks. It is shown that if there are unknown disturbances, off-policy IRL may not converge or
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 17:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丰台区| 寻甸| 肃北| 赤水市| 高雄县| 青铜峡市| 渭源县| 牟定县| 隆子县| 周口市| 治多县| 吉木乃县| 冀州市| 邯郸县| 鞍山市| 讷河市| 包头市| 武安市| 溧水县| 麦盖提县| 邹城市| 克什克腾旗| 石景山区| 旬阳县| 东宁县| 柏乡县| 株洲市| 隆尧县| 霞浦县| 察哈| 登封市| 拜城县| 忻城县| 庆元县| 泸西县| 车致| 宜丰县| 苗栗县| 米脂县| 平陆县| 定陶县|