找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Accelerating Discoveries in Data Science and Artificial Intelligence I; ICDSAI 2023, LIET Vi Frank M. Lin,Ashokkumar Patel,Bosubabu Sambana

[復(fù)制鏈接]
查看: 24684|回復(fù): 59
樓主
發(fā)表于 2025-3-21 19:01:32 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Accelerating Discoveries in Data Science and Artificial Intelligence I
期刊簡稱ICDSAI 2023, LIET Vi
影響因子2023Frank M. Lin,Ashokkumar Patel,Bosubabu Sambana
視頻videohttp://file.papertrans.cn/144/143641/143641.mp4
發(fā)行地址Discusses mathematically deep enough algorithms of data science to solve the real world problems.Explains the students AI techniques for several aspects of programming, sorting, pattern matching etc.A
學(xué)科分類Springer Proceedings in Mathematics & Statistics
圖書封面Titlebook: Accelerating Discoveries in Data Science and Artificial Intelligence I; ICDSAI 2023, LIET Vi Frank M. Lin,Ashokkumar Patel,Bosubabu Sambana
影響因子.The Volume 1 book on Accelerating Discoveries in Data Science and Artificial Intelligence (Proceedings of ICDSAI 2023), that was held on April 24-25, 2023 by CSUSB USA, the International Association of Academicians (IAASSE), and the Lendi Institute of Engineering and Technology, Vizianagaram, India is intended to be used as a reference book for researchers and practitioners in the disciplines of AI and data science. The book introduces key topics and algorithms and explains how these contribute to healthcare, manufacturing, law, finance, retail, real estate, accounting, digital marketing, and various other fields. The book is primarily meant for academics, researchers, and engineers who want to employ data science techniques and AI applications to address real-world issues. Besides that, businesses and technology creators will also find it appealing to use in industry..
Pindex Conference proceedings 2024
The information of publication is updating

書目名稱Accelerating Discoveries in Data Science and Artificial Intelligence I影響因子(影響力)




書目名稱Accelerating Discoveries in Data Science and Artificial Intelligence I影響因子(影響力)學(xué)科排名




書目名稱Accelerating Discoveries in Data Science and Artificial Intelligence I網(wǎng)絡(luò)公開度




書目名稱Accelerating Discoveries in Data Science and Artificial Intelligence I網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Accelerating Discoveries in Data Science and Artificial Intelligence I被引頻次




書目名稱Accelerating Discoveries in Data Science and Artificial Intelligence I被引頻次學(xué)科排名




書目名稱Accelerating Discoveries in Data Science and Artificial Intelligence I年度引用




書目名稱Accelerating Discoveries in Data Science and Artificial Intelligence I年度引用學(xué)科排名




書目名稱Accelerating Discoveries in Data Science and Artificial Intelligence I讀者反饋




書目名稱Accelerating Discoveries in Data Science and Artificial Intelligence I讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:32:47 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:58:54 | 只看該作者
地板
發(fā)表于 2025-3-22 05:38:51 | 只看該作者
5#
發(fā)表于 2025-3-22 12:42:07 | 只看該作者
6#
發(fā)表于 2025-3-22 13:52:51 | 只看該作者
7#
發(fā)表于 2025-3-22 19:10:49 | 只看該作者
https://doi.org/10.1007/978-3-030-77896-5 necessity designing cycle. The list suggests a moderate improvement for aiding exercises in necessity designing in a global programming advancement worldview. This work is very beneficial for those with less experience working in global programming advancement.
8#
發(fā)表于 2025-3-22 21:40:42 | 只看該作者
https://doi.org/10.1007/978-3-642-97696-4ID and WOA-PIDA control schemes were matched with recently developed nature-inspired computations. In addition to LPBO-PIPD, AOA-PIPD, and MPSO-PIPD, the suggested control schemes WOA-2DOFPID and WOA-PIDA are clearly more reliable, as evidenced by the comparison of the controllers.
9#
發(fā)表于 2025-3-23 04:51:54 | 只看該作者
10#
發(fā)表于 2025-3-23 08:56:51 | 只看該作者
https://doi.org/10.1007/978-3-662-00578-1 that the determination coefficient R has a value close to 1 and the mean square error tends to 0. This confirms the average prediction of the model. For better performance, it is preferable to input more historical data and to combine ANNs with metaheuristic algorithms.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 10:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长岭县| 巴塘县| 元阳县| 利川市| 闽清县| 宝丰县| 崇明县| 双桥区| 淄博市| 张北县| 南汇区| 崇文区| 永康市| 孟州市| 浦城县| 新泰市| 大余县| 安远县| 海门市| 汪清县| 深州市| 神池县| 竹北市| 河东区| 临城县| 峨边| 佳木斯市| 泽普县| 宜良县| 玉山县| 云南省| 宝应县| 珠海市| 临江市| 平利县| 乌拉特中旗| 仪征市| 鹿邑县| 水城县| 宽城| 安国市|