找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Abstract Parabolic Evolution Equations and ?ojasiewicz–Simon Inequality II; Applications Atsushi Yagi Book 2021 The Author(s), under exclus

[復制鏈接]
查看: 47966|回復: 36
樓主
發(fā)表于 2025-3-21 20:08:15 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Abstract Parabolic Evolution Equations and ?ojasiewicz–Simon Inequality II
期刊簡稱Applications
影響因子2023Atsushi Yagi
視頻videohttp://file.papertrans.cn/144/143465/143465.mp4
發(fā)行地址Demonstrates the asymptotic convergence to stationary solutions for global solutions of abstract parabolic equations.Includes n-dimensional semilinear parabolic equations and higher dimensional Keller
學科分類SpringerBriefs in Mathematics
圖書封面Titlebook: Abstract Parabolic Evolution Equations and ?ojasiewicz–Simon Inequality II; Applications Atsushi Yagi Book 2021 The Author(s), under exclus
影響因子This second volume continues the study on asymptotic convergence of global solutions of parabolic equations to stationary solutions by utilizing the theory of abstract parabolic evolution equations and the ?ojasiewicz–Simon gradient inequality. In the first volume of the same title, after setting the abstract frameworks of arguments, a general convergence theorem was proved under the four structural assumptions of critical condition, Lyapunov function, angle condition, and gradient inequality. In this volume, with those abstract results reviewed briefly, their applications to concrete parabolic equations are described..Chapter 3 presents a discussion of semilinear parabolic equations of second order in general .n.-dimensional spaces, and Chapter 4 is devoted to treating epitaxial growth equations of fourth order, which incorporate general roughening functions. In Chapter 5 consideration is given to the Keller–Segel equations in one-, two-, and three-dimensionalspaces. Some of these results had already been obtained and published by the author in collaboration with his colleagues. However, by means of the abstract theory described in the first volume, those results can be extended m
Pindex Book 2021
The information of publication is updating

書目名稱Abstract Parabolic Evolution Equations and ?ojasiewicz–Simon Inequality II影響因子(影響力)




書目名稱Abstract Parabolic Evolution Equations and ?ojasiewicz–Simon Inequality II影響因子(影響力)學科排名




書目名稱Abstract Parabolic Evolution Equations and ?ojasiewicz–Simon Inequality II網(wǎng)絡公開度




書目名稱Abstract Parabolic Evolution Equations and ?ojasiewicz–Simon Inequality II網(wǎng)絡公開度學科排名




書目名稱Abstract Parabolic Evolution Equations and ?ojasiewicz–Simon Inequality II被引頻次




書目名稱Abstract Parabolic Evolution Equations and ?ojasiewicz–Simon Inequality II被引頻次學科排名




書目名稱Abstract Parabolic Evolution Equations and ?ojasiewicz–Simon Inequality II年度引用




書目名稱Abstract Parabolic Evolution Equations and ?ojasiewicz–Simon Inequality II年度引用學科排名




書目名稱Abstract Parabolic Evolution Equations and ?ojasiewicz–Simon Inequality II讀者反饋




書目名稱Abstract Parabolic Evolution Equations and ?ojasiewicz–Simon Inequality II讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:56:57 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:11:31 | 只看該作者
Abstract Parabolic Evolution Equations and ?ojasiewicz–Simon Inequality II978-981-16-2663-0Series ISSN 2191-8198 Series E-ISSN 2191-8201
地板
發(fā)表于 2025-3-22 05:03:40 | 只看該作者
https://doi.org/10.1007/978-981-16-2663-0Abstract Parabolic Evolution Equations; ?ojasiewicz--Simon Inequality; Asymptotic Convergence of Solut
5#
發(fā)表于 2025-3-22 09:39:30 | 只看該作者
6#
發(fā)表于 2025-3-22 15:57:10 | 只看該作者
Atsushi YagiDemonstrates the asymptotic convergence to stationary solutions for global solutions of abstract parabolic equations.Includes n-dimensional semilinear parabolic equations and higher dimensional Keller
7#
發(fā)表于 2025-3-22 18:43:20 | 只看該作者
8#
發(fā)表于 2025-3-23 01:15:25 | 只看該作者
9#
發(fā)表于 2025-3-23 01:44:52 | 只看該作者
https://doi.org/10.1007/978-3-662-41320-3We consider an epitaxial growth model in surface science. The model equation includes an effect of surface diffusion which is described by a biharmonic operator and a roughening which caused by the Schwoebel effect. Under suitable assumptions, we show that the results reviewed in Chap. . are available to the model equation.
10#
發(fā)表于 2025-3-23 05:53:58 | 只看該作者
https://doi.org/10.1007/978-3-662-41320-3We consider the one-, two-, and three-dimensional Keller–Segel equations in biological population dynamics. The model equation includes an effect of attraction by chemical substance which is described by an advection equation. Under suitable assumptions, we show that the results reviewed in Chap. . are available to the these equations.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 13:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
光泽县| 绥宁县| 静乐县| 镇赉县| 兴和县| 中宁县| 濮阳县| 横山县| 宜昌市| 洱源县| 和静县| 石景山区| 鸡东县| 江源县| 缙云县| 长汀县| 南京市| 碌曲县| 山丹县| 托里县| 乳山市| 清水河县| 江油市| 永嘉县| 东至县| 虎林市| 兰考县| 凌源市| 八宿县| 舞阳县| 运城市| 云阳县| 年辖:市辖区| 佳木斯市| 尉犁县| 墨竹工卡县| 北安市| 东阿县| 岱山县| 上饶县| 沂南县|