找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Abstract Convexity and Global Optimization; Alexander Rubinov Book 2000 Springer Science+Business Media Dordrecht 2000 Approximation.Conve

[復(fù)制鏈接]
查看: 28594|回復(fù): 42
樓主
發(fā)表于 2025-3-21 16:57:16 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Abstract Convexity and Global Optimization
影響因子2023Alexander Rubinov
視頻videohttp://file.papertrans.cn/144/143447/143447.mp4
學(xué)科分類Nonconvex Optimization and Its Applications
圖書封面Titlebook: Abstract Convexity and Global Optimization;  Alexander Rubinov Book 2000 Springer Science+Business Media Dordrecht 2000 Approximation.Conve
影響因子Special tools are required for examining and solving optimization problems. The main tools in the study of local optimization are classical calculus and its modern generalizions which form nonsmooth analysis. The gradient and various kinds of generalized derivatives allow us to ac- complish a local approximation of a given function in a neighbourhood of a given point. This kind of approximation is very useful in the study of local extrema. However, local approximation alone cannot help to solve many problems of global optimization, so there is a clear need to develop special global tools for solving these problems. The simplest and most well-known area of global and simultaneously local optimization is convex programming. The fundamental tool in the study of convex optimization problems is the subgradient, which actu- ally plays both a local and global role. First, a subgradient of a convex function f at a point x carries out a local approximation of f in a neigh- bourhood of x. Second, the subgradient permits the construction of an affine function, which does not exceed f over the entire space and coincides with f at x. This affine function h is called a support func- tion. Since
Pindex Book 2000
The information of publication is updating

書目名稱Abstract Convexity and Global Optimization影響因子(影響力)




書目名稱Abstract Convexity and Global Optimization影響因子(影響力)學(xué)科排名




書目名稱Abstract Convexity and Global Optimization網(wǎng)絡(luò)公開度




書目名稱Abstract Convexity and Global Optimization網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Abstract Convexity and Global Optimization被引頻次




書目名稱Abstract Convexity and Global Optimization被引頻次學(xué)科排名




書目名稱Abstract Convexity and Global Optimization年度引用




書目名稱Abstract Convexity and Global Optimization年度引用學(xué)科排名




書目名稱Abstract Convexity and Global Optimization讀者反饋




書目名稱Abstract Convexity and Global Optimization讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:00:31 | 只看該作者
Masego Katisi,Philip Jefferies,Mpho Sebakof this function is a closed normal subset of the cone ?., hence there exists an IPH function . defined on ?. such that hyp .. is the support set of . with respect to the set . of all min-type functions. This observation allows us to examine decreasing functions with the help of IPH functions (See Section 3.4).
板凳
發(fā)表于 2025-3-22 02:54:22 | 只看該作者
Book 2000nd its modern generalizions which form nonsmooth analysis. The gradient and various kinds of generalized derivatives allow us to ac- complish a local approximation of a given function in a neighbourhood of a given point. This kind of approximation is very useful in the study of local extrema. Howeve
地板
發(fā)表于 2025-3-22 07:51:14 | 只看該作者
5#
發(fā)表于 2025-3-22 11:36:32 | 只看該作者
6#
發(fā)表于 2025-3-22 13:30:04 | 只看該作者
7#
發(fā)表于 2025-3-22 20:54:02 | 只看該作者
8#
發(fā)表于 2025-3-22 23:43:04 | 只看該作者
978-1-4419-4831-1Springer Science+Business Media Dordrecht 2000
9#
發(fā)表于 2025-3-23 02:46:32 | 只看該作者
https://doi.org/10.1007/978-3-319-72899-5One of the main results of convex analysis states that an arbitrary lower semicontinuous convex function . (perhaps admitting the value +∞) is the . of the set of all its affine minorants: ..
10#
發(fā)表于 2025-3-23 05:59:30 | 只看該作者
Ozge Karadag Caman MD, MSPH, PhDAbstract convexity based on the set of linear functions defined on ?. (as the set of elementary functions) leads to the classical convex analysis.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 00:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
伊金霍洛旗| 吉安县| 灌云县| 苏州市| 湛江市| 西宁市| 宁明县| 东台市| 嘉义市| 临澧县| 营口市| 衡南县| 印江| 若尔盖县| 通城县| 阿拉善左旗| 西安市| 安福县| 汶上县| 济宁市| 讷河市| 耒阳市| 乐至县| 资讯 | 城市| 信阳市| 裕民县| 砀山县| 凤冈县| 运城市| 巩义市| 东莞市| 勐海县| 沙田区| 庆云县| 遂宁市| 武冈市| 招远市| 石家庄市| 博兴县| 石台县|