找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Abstract Algebra; An Introductory Cour Gregory T. Lee Textbook 2018 Springer International Publishing AG, part of Springer Nature 2018 abst

[復(fù)制鏈接]
樓主: 大破壞
21#
發(fā)表于 2025-3-25 04:58:53 | 只看該作者
22#
發(fā)表于 2025-3-25 11:03:22 | 只看該作者
Delphine Letort,Abderrahmene BourenaneIn this chapter, we begin with a discussion of mathematical induction. Next, we examine a number of properties of the integers, with an emphasis on divisibility and prime factorization. We conclude by introducing modular arithmetic.
23#
發(fā)表于 2025-3-25 13:59:43 | 只看該作者
The Historical Character of Art,We can now determine the structure of finite abelian groups. In particular, every such group is isomorphic to a direct product of cyclic groups, each having prime power order. The proof of this result is our main goal in the present chapter.
24#
發(fā)表于 2025-3-25 18:59:23 | 只看該作者
25#
發(fā)表于 2025-3-25 21:37:14 | 只看該作者
26#
發(fā)表于 2025-3-26 02:58:52 | 只看該作者
27#
發(fā)表于 2025-3-26 06:27:30 | 只看該作者
Gregory T. LeeProvides a gentle, yet thorough, introduction to abstract algebra.Includes careful proofs of theorems and numerous worked examples.Written in an informal, readable style
28#
發(fā)表于 2025-3-26 11:00:43 | 只看該作者
29#
發(fā)表于 2025-3-26 14:04:38 | 只看該作者
,Florida’s Creative Class Thesis,impose four basic rules, and see what we can deduce. And yet, the possibilities are endless. Groups show up everywhere, and not just in mathematics. Indeed, it would be difficult to study physics or chemistry without an understanding of group theory. The solution to the famous Rubik’s cube is also a
30#
發(fā)表于 2025-3-26 17:10:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 16:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海原县| 张北县| 乌鲁木齐县| 垫江县| 庆城县| 天祝| 仁寿县| 宕昌县| 东光县| 南昌县| 瑞安市| 大庆市| 乳山市| 吉首市| 宣恩县| 开封市| 庄河市| 应用必备| 莫力| 水城县| 平邑县| 成武县| 英山县| 漠河县| 诏安县| 女性| 夏河县| 贡嘎县| 德化县| 开江县| 夏邑县| 新宁县| 汉中市| 龙岩市| 获嘉县| 孝昌县| 宜昌市| 肥城市| 察雅县| 高唐县| 江孜县|