找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Abelian Varieties over the Complex Numbers; A Graduate Course Herbert Lange Textbook 2023 The Editor(s) (if applicable) and The Author(s),

[復(fù)制鏈接]
查看: 20395|回復(fù): 39
樓主
發(fā)表于 2025-3-21 17:16:19 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Abelian Varieties over the Complex Numbers
期刊簡(jiǎn)稱A Graduate Course
影響因子2023Herbert Lange
視頻videohttp://file.papertrans.cn/144/143135/143135.mp4
發(fā)行地址Presents geometric constructions of the key abelian varieties: Jacobian, Albanese, Picard and Prym varieties.Introduces the Fourier–Mukai transform for sheaves and applies it to algebraic cycles and t
學(xué)科分類Grundlehren Text Editions
圖書封面Titlebook: Abelian Varieties over the Complex Numbers; A Graduate Course Herbert Lange Textbook 2023 The Editor(s) (if applicable) and The Author(s),
影響因子This textbook offers an introduction to abelian varieties, a rich topic of central importance to algebraic geometry. The emphasis is on geometric constructions over the complex numbers, notably the construction of important classes of abelian varieties and their algebraic cycles..The book begins with complex tori and their line bundles (theta functions), naturally leading to the definition of abelian varieties. After establishing basic properties, the moduli space of abelian varieties is introduced and studied. The next chapters are devoted to the study of the main examples of abelian varieties: Jacobian varieties, abelian surfaces, Albanese and Picard varieties, Prym varieties, and intermediate Jacobians. Subsequently, the Fourier–Mukai transform is introduced and applied to the study of sheaves, and results on Chow groups and the Hodge conjecture are obtained..This book is suitable for use as the main text for a first course on abelian varieties, for instance as a second graduate course in algebraic geometry. The variety of topics and abundant exercises also make it well suited to reading courses. The book provides an accessible reference, not only for students specializing in al
Pindex Textbook 2023
The information of publication is updating

書目名稱Abelian Varieties over the Complex Numbers影響因子(影響力)




書目名稱Abelian Varieties over the Complex Numbers影響因子(影響力)學(xué)科排名




書目名稱Abelian Varieties over the Complex Numbers網(wǎng)絡(luò)公開度




書目名稱Abelian Varieties over the Complex Numbers網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Abelian Varieties over the Complex Numbers被引頻次




書目名稱Abelian Varieties over the Complex Numbers被引頻次學(xué)科排名




書目名稱Abelian Varieties over the Complex Numbers年度引用




書目名稱Abelian Varieties over the Complex Numbers年度引用學(xué)科排名




書目名稱Abelian Varieties over the Complex Numbers讀者反饋




書目名稱Abelian Varieties over the Complex Numbers讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:08:22 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:25:07 | 只看該作者
地板
發(fā)表于 2025-3-22 08:33:29 | 只看該作者
5#
發(fā)表于 2025-3-22 12:32:26 | 只看該作者
6#
發(fā)表于 2025-3-22 16:37:32 | 只看該作者
7#
發(fā)表于 2025-3-22 21:03:25 | 只看該作者
8#
發(fā)表于 2025-3-22 21:51:40 | 只看該作者
9#
發(fā)表于 2025-3-23 03:40:28 | 只看該作者
10#
發(fā)表于 2025-3-23 08:37:26 | 只看該作者
Back Matter vorgenannte Definition erkennen l?sst. Auch die Lehre des Rechtspositivismus kommt nicht umhin, dass Rechtsanwendung eine Interpretation des Gesetzestextes vonn?ten macht, also sprachliches Verstehen und sprachliche Auslegung bedingt. Damit unterwirft sich das Recht der Sprache. ?Gesetze sind S?tze
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 03:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宝丰县| 瑞金市| 兴宁市| 隆子县| 攀枝花市| 涿鹿县| 陇南市| 图片| 桃园县| 龙游县| 武汉市| 封丘县| 左云县| 那坡县| 嘉祥县| 垫江县| 巫山县| 宿迁市| 北京市| 九江县| 长沙市| 日土县| 株洲市| 吴桥县| 石嘴山市| 同仁县| 田东县| 梁河县| 盐边县| 德清县| 历史| 莒南县| 乐都县| 石台县| 仁化县| 富蕴县| 武川县| 平阴县| 永顺县| 江华| 鄂托克旗|