找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Abelian Varieties; Serge Lang Textbook 1983 Springer-Verlag New York Inc. 1983 Abelian variety.Abelsche Variet?t.Varieties.algebra.homomor

[復(fù)制鏈接]
樓主: 脾氣好
11#
發(fā)表于 2025-3-23 09:42:42 | 只看該作者
http://image.papertrans.cn/a/image/143134.jpg
12#
發(fā)表于 2025-3-23 17:03:19 | 只看該作者
13#
發(fā)表于 2025-3-23 19:28:58 | 只看該作者
Oliver Schütze,Carlos Hernándezy properties of algebraic groups, and we shall not need structure theorems, for instance. All the results which we shall need are stated explicitly below. We give no proofs in § 1. Granting IAG, a complete self-contained exposition can be found in the papers of Weil and Rosenlicht.
14#
發(fā)表于 2025-3-23 22:46:53 | 只看該作者
Oliver Schütze,Carlos HernándezAn . is a group variety, which, as a variety, is complete. In the classical case, it is not difficult to show that topologically an abelian variety is a complex torus.
15#
發(fā)表于 2025-3-24 02:28:49 | 只看該作者
16#
發(fā)表于 2025-3-24 08:14:39 | 只看該作者
https://doi.org/10.1007/978-3-322-88139-7In the last chapter we defined various equivalence relations, and we shall now determine the structure of the factor groups for these equivalence relations in the group of divisors of an abelian variety A. We have inclusions
17#
發(fā)表于 2025-3-24 14:38:29 | 只看該作者
https://doi.org/10.1007/978-3-658-23456-0We first define the transpose of a homomorphism, i.e., the contravariant mapping induced on the Picard varieties. We prove that the transpose of an exact sequence (up to isogenies) is exact (up to isogenies).
18#
發(fā)表于 2025-3-24 18:21:56 | 只看該作者
https://doi.org/10.1007/978-3-663-02318-0In this chapter we exploit the fact that for . prime to the characteristic there exist exactly . points of order . on an abelian variety . of dimension ..
19#
發(fā)表于 2025-3-24 22:31:18 | 只看該作者
20#
發(fā)表于 2025-3-25 03:02:27 | 只看該作者
https://doi.org/10.1007/978-1-4419-8534-7Abelian variety; Abelsche Variet?t; Varieties; algebra; homomorphism
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 16:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大悟县| 太仆寺旗| 高要市| 平度市| 吉安县| 临朐县| 大竹县| 开鲁县| 鄂托克前旗| 五指山市| 贵德县| 元江| 邢台市| 梁山县| 衡山县| 安塞县| 仙居县| 南京市| 乌鲁木齐县| 阿巴嘎旗| 司法| 平江县| 荥阳市| 潍坊市| 盐池县| 利津县| 靖西县| 嘉兴市| 长春市| 建昌县| 宝清县| 双柏县| 邢台市| 万源市| 互助| 辽中县| 吴桥县| 平乐县| 祁门县| 房产| 建宁县|