找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Abelian Groups and Representations of Finite Partially Ordered Sets; David M. Arnold Book 2000 Springer Science+Business Media New York 20

[復(fù)制鏈接]
樓主: 貪吃的人
31#
發(fā)表于 2025-3-27 00:42:18 | 只看該作者
32#
發(fā)表于 2025-3-27 02:01:38 | 只看該作者
33#
發(fā)表于 2025-3-27 07:18:14 | 只看該作者
34#
發(fā)表于 2025-3-27 10:17:01 | 只看該作者
,11. Kapitel I.G.-Farben-Verwaltungsgeb?ude,Finite-dimensional vector spaces with finite sets of distinguished subspaces are illustrative examples of representations of finite posets. This provides a natural setting for equivalence and similarity of matrices, as demonstrated in the exercises.
35#
發(fā)表于 2025-3-27 16:42:31 | 只看該作者
,11. Kapitel I.G.-Farben-Verwaltungsgeb?ude,There are two equivalence relations on torsion-free abelian groups that are weaker than group isomorphism, namely quasi-isomorphism and isomorphism at a prime .. Properties of these equivalence relations are conveniently expressed in a categorical setting.
36#
發(fā)表于 2025-3-27 18:32:58 | 只看該作者
,7. Kapitel V?lkerschlachtdenkmal,Finite direct sums of torsion-free abelian groups of rank 1, called completely decomposable groups, can be classified in terms of types. Included in this section is a compilation of some of the fundamental properties of types and fully invariant subgroups determined by types.
37#
發(fā)表于 2025-3-27 23:59:07 | 只看該作者
https://doi.org/10.1007/978-3-642-53805-6An almost completely decomposable group is a torsion-free abelian group . of finite rank quasi-isomorphic to a completely decomposable group. An almost completely decomposable group is a Butler group, by Corollary 3.2.4, but any strongly indecomposable Butler group with finite rank greater than 1 is not almost completely decomposable.
38#
發(fā)表于 2025-3-28 02:25:34 | 只看該作者
39#
發(fā)表于 2025-3-28 07:58:26 | 只看該作者
The Impact of Wine Tourism on the Sustainability Outcomes of Spanish Wineries: An Exploration via Stto the ramifications of wine tourism on the holistic sustainability of Spanish wineries. Consequently, this inquiry holds instrumental value for academicians and industry practitioners pondering the initiation or augmentation of such tourism-centric initiatives within their establishments.
40#
發(fā)表于 2025-3-28 11:34:11 | 只看該作者
On-Orbit Performance Analysis of AIUS/GF-5 Instrument,in, and acceleration to these “random” type forces do not have simple time histories either. Typical data for either the time behavior of a force or the response to that force at a point on an ocean structure might look like the trace shown in Fig. 9.1, where, for generality, the ordinate is designa
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
神木县| 丁青县| 和平区| 临猗县| 清远市| 民权县| 富宁县| 铜梁县| 中江县| 南城县| 海伦市| 久治县| 吴堡县| 平度市| 石景山区| 云浮市| 遂昌县| 虎林市| 滨州市| 留坝县| 砀山县| 桐庐县| 乃东县| 天祝| 隆昌县| 满城县| 渭源县| 淮滨县| 区。| 濉溪县| 遵义市| 云林县| 田东县| 阿图什市| 商水县| 苍山县| 高要市| 西昌市| 会同县| 遂溪县| 沾化县|