找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Abelian Groups and Modules; Proceedings of the P Alberto Facchini,Claudia Menini Conference proceedings 1995 Springer Science+Business Medi

[復(fù)制鏈接]
樓主: 威風(fēng)
51#
發(fā)表于 2025-3-30 09:03:45 | 只看該作者
52#
發(fā)表于 2025-3-30 14:27:08 | 只看該作者
https://doi.org/10.1007/978-3-658-26262-4 endofunctors of ..). Roeder proved that in case . is the ring of integers (i. e. for locally compact abelian groups) Pontryagin duality is the unique functorial duality. It was conjectured by Iv. Prodanov that in case . is an algebraic number ring such a uniqueness is available if and only if . is
53#
發(fā)表于 2025-3-30 19:32:51 | 只看該作者
,11. Kapitel I.G.-Farben-Verwaltungsgeb?ude,stions of existence of such rings, Section 2 deals with the situation in which all subrings belong to one of the three classes, and Section 3 is concerned with the behavior of the sets under intersection. In Section 4 we give a brief survey of some generalizations and extensions of results of Sectio
54#
發(fā)表于 2025-3-30 22:18:15 | 只看該作者
55#
發(fā)表于 2025-3-31 02:20:25 | 只看該作者
56#
發(fā)表于 2025-3-31 07:14:51 | 只看該作者
978-94-010-4198-0Springer Science+Business Media Dordrecht 1995
57#
發(fā)表于 2025-3-31 10:41:45 | 只看該作者
,11. Kapitel I.G.-Farben-Verwaltungsgeb?ude,s a Jaffard domain if dim.(.) = dim, (.). As the class of Jaffard domains is not stable under localization, a domain . is defined to be a locally Jaffard domain if .. is a Jaffard domain for each prime ideal . of . (cf. [.]).
58#
發(fā)表于 2025-3-31 15:34:33 | 只看該作者
belian groups and modules Italian conferences (Rome 77, Udine 85, Bressanone 90) needed to be kept up by one more meeting. Since that first time it was clear to us that our goal was not so easy. In fact the main intended topics of abelian groups, modules over commutative rings and non commutative ri
59#
發(fā)表于 2025-3-31 19:25:15 | 只看該作者
60#
發(fā)表于 2025-3-31 23:22:01 | 只看該作者
https://doi.org/10.1007/978-3-658-26262-4 functorial duality. It was conjectured by Iv. Prodanov that in case . is an algebraic number ring such a uniqueness is available if and only if . is a principal ideal domain. We prove this conjecture for real algebraic number rings and we show that Prodanov’s conjecture fails in case . is an order in an imaginary quadratic number field.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 12:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
思南县| 同心县| 巴林右旗| 文水县| 万荣县| 清水河县| 遂川县| 八宿县| 鱼台县| 哈巴河县| 娄烦县| 碌曲县| 德格县| 靖西县| 兴城市| 迁西县| 卫辉市| 湘潭市| 巴塘县| 高雄县| 昭苏县| 石门县| 佛学| 精河县| 巫山县| 梁平县| 桑植县| 嘉义县| 当涂县| 沐川县| 扶沟县| 内乡县| 蒲城县| 扎鲁特旗| 龙游县| 微博| 元氏县| 湖口县| 宜宾市| 洛南县| 昌吉市|