找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Abelian Groups and Modules; Proceedings of the U R. G?bel,C. Metelli,L. Salce Conference proceedings 1984 CISM Udine 1984 Abelian group.bir

[復制鏈接]
樓主: GURU
41#
發(fā)表于 2025-3-28 17:01:53 | 只看該作者
A Combinatorial Theorem and Endomorphism Rings of Abelian Groups II,978-3-7091-4536-4
42#
發(fā)表于 2025-3-28 18:53:31 | 只看該作者
,Essentially C-indecomposable pω+n-Projective p-Groups,978-3-642-79390-5
43#
發(fā)表于 2025-3-28 22:57:26 | 只看該作者
44#
發(fā)表于 2025-3-29 06:03:55 | 只看該作者
The Divisible and E-Injective Hulls of a Torsion Free Group,978-3-0348-6862-4
45#
發(fā)表于 2025-3-29 09:09:38 | 只看該作者
46#
發(fā)表于 2025-3-29 15:06:06 | 只看該作者
https://doi.org/10.1007/978-3-658-06957-5ential homomorphisms only for any i ≠ j ∈ p. Naturally, we want ρ to be as large as possible which is ρ = 2. . In all “classical cases” we derived ρ = 2. , but it would be much nicer to obtain ρ = 2. without any restrictions as assumed in [CG], Theorem 5.2(b). The following theorem will settle this problem which will be our main result.
47#
發(fā)表于 2025-3-29 17:44:02 | 只看該作者
,7. Kapitel V?lkerschlachtdenkmal,tion 3.5] to arbitrary homogeneous groups by showing that a homogeneous torsionfree group is Butler if and only if it is completely decomposable. The main tool in this direction is a slight modification of Griffith’s proof [9] of the freeness of Baer’s
48#
發(fā)表于 2025-3-29 20:01:31 | 只看該作者
49#
發(fā)表于 2025-3-30 03:28:27 | 只看該作者
https://doi.org/10.1007/978-3-658-06957-5n the proofs we utilize two results: the first reduces the global problem to endomorphism rings of local groups; the second, a local theorem, classifies isomorphisms of endomorphism rings of local groups. The bulk of the proofs are then devoted to relating such isomorphisms to p-indicators.
50#
發(fā)表于 2025-3-30 06:54:42 | 只看該作者
https://doi.org/10.1007/978-3-531-19990-0have done to carry on and complete the work they started. Moreover, it may be beneficial for us to examine methods and techniques that have developed over this period and to analyse those in current use. Finally, we consider a few open problems and discuss briefly directions for future research.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 04:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
林西县| 澄迈县| 老河口市| 黄石市| 邮箱| 永靖县| 都兰县| 庆安县| 西畴县| 金乡县| 温泉县| 本溪| 新源县| 巫溪县| 定边县| 米脂县| 赫章县| 潜江市| 紫金县| 拜泉县| 屯门区| 剑河县| 京山县| 东宁县| 巴东县| 禄丰县| 徐州市| 吉隆县| 常熟市| 德阳市| 壶关县| 墨竹工卡县| 定安县| 泰顺县| 绥德县| 左贡县| 克什克腾旗| 濮阳县| 罗源县| 三门峡市| 宜都市|