找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Study of Braids; Kunio Murasugi,Bohdan I. Kurpita Book 1999 Springer Science+Business Media Dordrecht 1999 Group theory.Homotopy.Mathema

[復(fù)制鏈接]
樓主: GERD847
41#
發(fā)表于 2025-3-28 17:30:36 | 只看該作者
42#
發(fā)表于 2025-3-28 18:46:01 | 只看該作者
https://doi.org/10.1007/978-94-009-3659-1e of the cube twice around a vertical axis that connects the centre of the top face with the centre of the bottom face. On completion of this double twist, the trivial braid (in the cube) now has the look of an entangled braid. In fact, in terms of the Artin generators this new braid, . say, in . ca
43#
發(fā)表于 2025-3-28 22:57:32 | 只看該作者
Marking mammals by tissue removaltry and establish the braid group for the more general case of manifolds in dimensions greater than or equal to 2, we need a more methodical approach. Such an approach exists and has been developed in [FoN] and [FaV]. Somewhat unexpectedly, this approach allows us to apply braid theory to the solvab
44#
發(fā)表于 2025-3-29 05:21:36 | 只看該作者
45#
發(fā)表于 2025-3-29 10:01:55 | 只看該作者
46#
發(fā)表于 2025-3-29 13:13:52 | 只看該作者
Christoph Brücker,Horst BleckmannIn Theorem 2.2 of Chapter 2 we showed that B. has a particularly readable/compact presentation. But, since the subgroup B. of the braid group B. is of infinite order, B. for n ≥ 2 is not a finite group.
47#
發(fā)表于 2025-3-29 15:59:18 | 只看該作者
48#
發(fā)表于 2025-3-29 20:53:18 | 只看該作者
49#
發(fā)表于 2025-3-30 01:11:55 | 只看該作者
Kaushalendra Kumar,Vinod Kumar PaswanA knot, succinctly, is a simple closed . curve in ?., however, for the purposes of this book, we will usually think of a knot as a simple closed . curve, see Figure 1.1.
50#
發(fā)表于 2025-3-30 06:55:45 | 只看該作者
Developments in Plant and Soil SciencesIn Section 4 of the previous chapter, starting with a diagram . of an oriented knot ., we described a method that allowed us to find a separating simple closed curve . on the plane ?.. This, in turn, led to a braided link (., .), which we then used to extract a braid .. Coming full circle, the closure of ., denoted by ., is equivalent to ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 23:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平安县| 台东县| 前郭尔| 隆尧县| 马鞍山市| 于都县| 淳化县| 锡林浩特市| 华池县| 乌苏市| 碌曲县| 万源市| 石城县| 信阳市| 新泰市| 麦盖提县| 南雄市| 邳州市| 沁水县| 西安市| 东阿县| 修文县| 东港市| 湟源县| 宁晋县| 中阳县| 许昌市| 囊谦县| 梨树县| 类乌齐县| 斗六市| 九龙城区| 木兰县| 防城港市| 汉川市| 钟山县| 元氏县| 神木县| 赣榆县| 孝义市| 灌阳县|