找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Readable Introduction to Real Mathematics; Daniel Rosenthal,David Rosenthal,Peter Rosenthal Textbook 20141st edition Springer Internatio

[復(fù)制鏈接]
樓主: 空格
11#
發(fā)表于 2025-3-23 11:41:21 | 只看該作者
https://doi.org/10.1007/978-3-642-60430-0Mathematical induction is a technique that is useful in proving many theorems. We describe this technique in detail and give a number of applications of it.
12#
發(fā)表于 2025-3-23 16:46:09 | 只看該作者
13#
發(fā)表于 2025-3-23 19:12:43 | 只看該作者
14#
發(fā)表于 2025-3-24 00:51:00 | 只看該作者
15#
發(fā)表于 2025-3-24 02:45:51 | 只看該作者
A Readable Introduction to Real Mathematics978-3-319-05654-8Series ISSN 0172-6056 Series E-ISSN 2197-5604
16#
發(fā)表于 2025-3-24 08:22:26 | 只看該作者
Klassische quantitative Analyse,ther 3 plus 2 to the power 3,000,005 is divisible by 7. More importantly, it has a number of applications, such as proving that a natural number is divisible by 9 if and only if the sum of its digits is divisible by 9.
17#
發(fā)表于 2025-3-24 14:17:44 | 只看該作者
18#
發(fā)表于 2025-3-24 17:05:07 | 只看該作者
19#
發(fā)表于 2025-3-24 19:27:43 | 只看該作者
Hans Peter Latscha,Helmut Alfons Kleinal numbers, which are called “irrational numbers”. In particular, we prove that the square root of two is irrational. The collection of all rational and all irrational numbers is called the set of real numbers. We develop techniques for determining whether or not given real numbers are rational.
20#
發(fā)表于 2025-3-25 02:32:22 | 只看該作者
Hans Peter Latscha,Helmut Alfons Kleinrs are all the numbers of the form . + . where . and . are real numbers. It is a remarkable fact that every polynomial with real coefficients that is not a constant has a complex root. In this chapter we develop the basic properties of the complex numbers.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 02:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
双牌县| 德州市| 当雄县| 仪征市| 江山市| 武宣县| 皋兰县| 金门县| 涿鹿县| 邯郸市| 鄂托克前旗| 兴文县| 岳普湖县| 拉萨市| 凤山市| 秦皇岛市| 宣化县| 鄂尔多斯市| 嘉黎县| 霞浦县| 新巴尔虎右旗| 册亨县| 临武县| 马山县| 临桂县| 布尔津县| 广饶县| 临城县| 平武县| 东丰县| 阿坝| 玉山县| 宁河县| 邓州市| 辛集市| 安国市| 长丰县| 什邡市| 阿勒泰市| 海淀区| 乌兰浩特市|