找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Readable Introduction to Real Mathematics; Daniel Rosenthal,David Rosenthal,Peter Rosenthal Textbook 20141st edition Springer Internatio

[復(fù)制鏈接]
樓主: 空格
11#
發(fā)表于 2025-3-23 11:41:21 | 只看該作者
https://doi.org/10.1007/978-3-642-60430-0Mathematical induction is a technique that is useful in proving many theorems. We describe this technique in detail and give a number of applications of it.
12#
發(fā)表于 2025-3-23 16:46:09 | 只看該作者
13#
發(fā)表于 2025-3-23 19:12:43 | 只看該作者
14#
發(fā)表于 2025-3-24 00:51:00 | 只看該作者
15#
發(fā)表于 2025-3-24 02:45:51 | 只看該作者
A Readable Introduction to Real Mathematics978-3-319-05654-8Series ISSN 0172-6056 Series E-ISSN 2197-5604
16#
發(fā)表于 2025-3-24 08:22:26 | 只看該作者
Klassische quantitative Analyse,ther 3 plus 2 to the power 3,000,005 is divisible by 7. More importantly, it has a number of applications, such as proving that a natural number is divisible by 9 if and only if the sum of its digits is divisible by 9.
17#
發(fā)表于 2025-3-24 14:17:44 | 只看該作者
18#
發(fā)表于 2025-3-24 17:05:07 | 只看該作者
19#
發(fā)表于 2025-3-24 19:27:43 | 只看該作者
Hans Peter Latscha,Helmut Alfons Kleinal numbers, which are called “irrational numbers”. In particular, we prove that the square root of two is irrational. The collection of all rational and all irrational numbers is called the set of real numbers. We develop techniques for determining whether or not given real numbers are rational.
20#
發(fā)表于 2025-3-25 02:32:22 | 只看該作者
Hans Peter Latscha,Helmut Alfons Kleinrs are all the numbers of the form . + . where . and . are real numbers. It is a remarkable fact that every polynomial with real coefficients that is not a constant has a complex root. In this chapter we develop the basic properties of the complex numbers.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 02:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
堆龙德庆县| 左云县| 当涂县| 邳州市| 敖汉旗| 云和县| 荆门市| 理塘县| 澄迈县| 神木县| 长沙县| 若尔盖县| 浑源县| 峡江县| 深泽县| 屯门区| 东丽区| 永州市| 江都市| 会宁县| 鹤峰县| 普兰店市| 九龙县| 景谷| 姜堰市| 平江县| 平利县| 德惠市| 浦城县| 西林县| 左贡县| 建水县| 凤山市| 岐山县| 香格里拉县| 巢湖市| 常山县| 呼玛县| 上栗县| 瓦房店市| 聊城市|