找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Readable Introduction to Real Mathematics; Daniel Rosenthal,David Rosenthal,Peter Rosenthal Textbook 20141st edition Springer Internatio

[復(fù)制鏈接]
樓主: 空格
11#
發(fā)表于 2025-3-23 11:41:21 | 只看該作者
https://doi.org/10.1007/978-3-642-60430-0Mathematical induction is a technique that is useful in proving many theorems. We describe this technique in detail and give a number of applications of it.
12#
發(fā)表于 2025-3-23 16:46:09 | 只看該作者
13#
發(fā)表于 2025-3-23 19:12:43 | 只看該作者
14#
發(fā)表于 2025-3-24 00:51:00 | 只看該作者
15#
發(fā)表于 2025-3-24 02:45:51 | 只看該作者
A Readable Introduction to Real Mathematics978-3-319-05654-8Series ISSN 0172-6056 Series E-ISSN 2197-5604
16#
發(fā)表于 2025-3-24 08:22:26 | 只看該作者
Klassische quantitative Analyse,ther 3 plus 2 to the power 3,000,005 is divisible by 7. More importantly, it has a number of applications, such as proving that a natural number is divisible by 9 if and only if the sum of its digits is divisible by 9.
17#
發(fā)表于 2025-3-24 14:17:44 | 只看該作者
18#
發(fā)表于 2025-3-24 17:05:07 | 只看該作者
19#
發(fā)表于 2025-3-24 19:27:43 | 只看該作者
Hans Peter Latscha,Helmut Alfons Kleinal numbers, which are called “irrational numbers”. In particular, we prove that the square root of two is irrational. The collection of all rational and all irrational numbers is called the set of real numbers. We develop techniques for determining whether or not given real numbers are rational.
20#
發(fā)表于 2025-3-25 02:32:22 | 只看該作者
Hans Peter Latscha,Helmut Alfons Kleinrs are all the numbers of the form . + . where . and . are real numbers. It is a remarkable fact that every polynomial with real coefficients that is not a constant has a complex root. In this chapter we develop the basic properties of the complex numbers.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 11:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁阳县| 扎囊县| 公安县| 镇沅| 陆丰市| 清涧县| 黎平县| 富蕴县| 全州县| 宁津县| 青冈县| 定兴县| 右玉县| 双江| 锦州市| 城步| 偃师市| 长治市| 勃利县| 蓬溪县| 永兴县| 青海省| 定南县| 威远县| 棋牌| 垫江县| 孟连| 平江县| 简阳市| 阿克陶县| 沙洋县| 宣化县| 台南县| 全南县| 金溪县| 大洼县| 灌云县| 邹平县| 佛山市| 江川县| 怀远县|