找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Pythagorean Introduction to Number Theory; Right Triangles, Sum Ramin Takloo-Bighash Textbook 2018 Springer Nature Switzerland AG 2018 Py

[復(fù)制鏈接]
樓主: 征募
41#
發(fā)表于 2025-3-28 16:20:20 | 只看該作者
Sedimentation parameter of linear polymers,In this chapter we present two different methods to find the solutions of the Pythagorean Equation, one algebraic and one geometric. We then apply the geometric method to find solutions of some other equations.
42#
發(fā)表于 2025-3-28 20:47:09 | 只看該作者
H. Triebel,H. B?r,R. Geuther,G. BurckhardtIn this chapter we study the set of integers that are the area of a right triangle with integer sides.
43#
發(fā)表于 2025-3-29 00:40:49 | 只看該作者
Susumu Uchiyama,Fumio Arisaka,Tom LaueIn this chapter we study numbers that appear as the side lengths of primitive right triangles. We use rings of Gaussian integers to prove our main theorems. We give a quick review of the basic properties of the ring of Gaussian integers. For a more thorough exposition we refer the reader to the classical text by Sierpinski [46] or Conrad [69].
44#
發(fā)表于 2025-3-29 04:08:24 | 只看該作者
Experimental Design and Practical AspectsThe main goal of this chapter is to prove that there are infinitely many primes of the form .. We will also state the Law of Quadratic Reciprocity.
45#
發(fā)表于 2025-3-29 08:17:18 | 只看該作者
46#
發(fā)表于 2025-3-29 14:37:47 | 只看該作者
47#
發(fā)表于 2025-3-29 19:34:26 | 只看該作者
48#
發(fā)表于 2025-3-29 21:46:21 | 只看該作者
Analytical Ultracentrifugation VThe goal of this chapter is to give a second proof of the Four Squares Theorem. This proof uses the theory of quaternions, which we will briefly discuss. The proof of the Four Squares Theorem in this chapter is in the spirit of the argument for the Two Squares Theorem we presented in Chapter 5 using Gaussian integers.
49#
發(fā)表于 2025-3-30 01:00:55 | 只看該作者
50#
發(fā)表于 2025-3-30 06:46:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 02:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
原平市| 汝州市| 新竹市| 武陟县| 平山县| 台东市| 白城市| 永顺县| 施秉县| 涟水县| 岳阳市| 天柱县| 淮阳县| 临朐县| 桃江县| 伊春市| 时尚| 富平县| 盐池县| 祥云县| 宕昌县| 博罗县| 沙洋县| 花垣县| 鄂尔多斯市| 襄垣县| 改则县| 双桥区| 济南市| 延庆县| 鱼台县| 监利县| 肇州县| 金坛市| 高陵县| 廊坊市| 兖州市| 韶关市| 衡山县| 大理市| 高唐县|