找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Projection Transformation Method for Nearly Singular Surface Boundary Element Integrals; Ken Hayami Book 1992 Springer-Verlag Berlin Hei

[復制鏈接]
查看: 6817|回復: 49
樓主
發(fā)表于 2025-3-21 18:50:30 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱A Projection Transformation Method for Nearly Singular Surface Boundary Element Integrals
影響因子2023Ken Hayami
視頻videohttp://file.papertrans.cn/142/141958/141958.mp4
學科分類Lecture Notes in Engineering
圖書封面Titlebook: A Projection Transformation Method for Nearly Singular Surface Boundary Element Integrals;  Ken Hayami Book 1992 Springer-Verlag Berlin Hei
影響因子In three dimensional boundary element analysis, computation of integrals is an important aspect since it governs the accuracy of the analysis and also because it usually takes the major part of the CPU time. The integrals which determine the influence matrices, the internal field and its gradients contain (nearly) singular kernels of order lIr a (0:= 1,2,3,4,.··) where r is the distance between the source point and the integration point on the boundary element. For planar elements, analytical integration may be possible 1,2,6. However, it is becoming increasingly important in practical boundary element codes to use curved elements, such as the isoparametric elements, to model general curved surfaces. Since analytical integration is not possible for general isoparametric curved elements, one has to rely on numerical integration. When the distance d between the source point and the element over which the integration is performed is sufficiently large compared to the element size (d> 1), the standard Gauss-Legendre quadrature formula 1,3 works efficiently. However, when the source is actually on the element (d=O), the kernel 1I~ becomes singular and the straight forward application of
Pindex Book 1992
The information of publication is updating

書目名稱A Projection Transformation Method for Nearly Singular Surface Boundary Element Integrals影響因子(影響力)




書目名稱A Projection Transformation Method for Nearly Singular Surface Boundary Element Integrals影響因子(影響力)學科排名




書目名稱A Projection Transformation Method for Nearly Singular Surface Boundary Element Integrals網(wǎng)絡(luò)公開度




書目名稱A Projection Transformation Method for Nearly Singular Surface Boundary Element Integrals網(wǎng)絡(luò)公開度學科排名




書目名稱A Projection Transformation Method for Nearly Singular Surface Boundary Element Integrals被引頻次




書目名稱A Projection Transformation Method for Nearly Singular Surface Boundary Element Integrals被引頻次學科排名




書目名稱A Projection Transformation Method for Nearly Singular Surface Boundary Element Integrals年度引用




書目名稱A Projection Transformation Method for Nearly Singular Surface Boundary Element Integrals年度引用學科排名




書目名稱A Projection Transformation Method for Nearly Singular Surface Boundary Element Integrals讀者反饋




書目名稱A Projection Transformation Method for Nearly Singular Surface Boundary Element Integrals讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:50:33 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:40:31 | 只看該作者
地板
發(fā)表于 2025-3-22 05:59:03 | 只看該作者
5#
發(fā)表于 2025-3-22 12:14:30 | 只看該作者
6#
發(fā)表于 2025-3-22 16:40:25 | 只看該作者
Applications to Nearly Singular Integralshenomena. Until recently, this has made it impossible to develop a “global view” of the events that govern their existence. Recent breakthroughs in network science allow for a graphical representation and modeling of large numbers of interacting factors, which may bring such a global view within rea
7#
發(fā)表于 2025-3-22 18:32:17 | 只看該作者
Application to Hypersingular Integralsations and/or delusions. This can be the result of substance use, abuse, intoxication, or withdrawal. The speed of onset and the type of psychotic symptoms vary depending on the type of substance. Regarding symptomatology, auditory hallucinations (specifically, hearing voices), visual hallucinations
8#
發(fā)表于 2025-3-23 00:59:57 | 只看該作者
9#
發(fā)表于 2025-3-23 03:53:20 | 只看該作者
Back Matter-tums l??t sich nicht übersehen. Die Berichte sind eindeutig und übereinstimmend, stammen sie nun aus Afrika, aus Hongkong oder aus Japan. Regelm??ig trat mit der Einführung westlicher Fu?bekleidung als ungebetener Gast der Hallux valgus in Erscheinung. Dabei sind unter westlicher Fu?bekleidung Schu
10#
發(fā)表于 2025-3-23 08:22:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 08:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
扶余县| 灵寿县| 沙湾县| 禄劝| 祁东县| 阿鲁科尔沁旗| 南漳县| 曲沃县| 太和县| 宣威市| 黑山县| 广德县| 建宁县| 普兰店市| 宣化县| 正镶白旗| 苍南县| 梅河口市| 道真| 涪陵区| 舞阳县| 永安市| 景宁| 南乐县| 商河县| 内乡县| 赤城县| 东阳市| 樟树市| 靖西县| 大理市| 安乡县| 突泉县| 且末县| 吉木萨尔县| 那坡县| 调兵山市| 林口县| 南木林县| 巢湖市| 泸定县|