找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Perspective on Canonical Riemannian Metrics; Giovanni Catino,Paolo Mastrolia Book 2020 The Editor(s) (if applicable) and The Author(s),

[復(fù)制鏈接]
樓主: Optician
11#
發(fā)表于 2025-3-23 13:11:35 | 只看該作者
12#
發(fā)表于 2025-3-23 14:04:18 | 只看該作者
13#
發(fā)表于 2025-3-23 18:04:30 | 只看該作者
Information Transfer in Canonical Systems,In this first, introductory chapter we recall some important definitions and results of Riemannian Geometry, essentially following [1]. Although we assume the reader to be familiar with the general subject, as presented, e.g., in the standard references [109, 110, 15, 132, 78, 74], several computations and proofs will be provided in full detail.
14#
發(fā)表于 2025-3-23 23:18:30 | 只看該作者
15#
發(fā)表于 2025-3-24 03:44:28 | 只看該作者
16#
發(fā)表于 2025-3-24 10:10:07 | 只看該作者
17#
發(fā)表于 2025-3-24 13:55:50 | 只看該作者
Economics of Trenchless Technology,In this chapter we introduce a second possible way to study canonical metrics on Riemannian manifolds, namely the one related to “Critical Metrics of Riemannian functionals” (CM, for short).
18#
發(fā)表于 2025-3-24 17:17:34 | 只看該作者
https://doi.org/10.1007/978-1-4615-3058-9Bochner-Weitzenb?ck formulas for the Weyl tensor have been widely used in the last decades; to indicate just some of these works, focused on the study of Einstein manifolds and related structures, we mention those of Derdzinski [68], Singer [139], Hebey-Vaugon [93], Gursky [84, 86], Gursky-Lebrun [87], Yang [149] (see also the references therein).
19#
發(fā)表于 2025-3-24 20:29:59 | 只看該作者
https://doi.org/10.1007/978-1-349-27433-8As in Chapter 4, we denote the spaces of Ricci solitons and of gradient Ricci solitons by ε. and ε. , respectively. A soliton X is . if X is a Killing vector field, or if △ f is parallel in the gradient case: clearly, a trivial Ricci soliton is an Einstein manifold.
20#
發(fā)表于 2025-3-25 00:39:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 01:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
罗甸县| 乐都县| 宜丰县| 正阳县| 治多县| 南和县| 潍坊市| 横峰县| 呼伦贝尔市| 美姑县| 繁峙县| 五原县| 临泉县| 镇远县| 株洲县| 杭锦旗| 深圳市| 寿宁县| 会东县| 永城市| 沾益县| 太白县| 本溪市| 遵义县| 安庆市| 百色市| 天镇县| 东山县| 芜湖市| 遂平县| 永定县| 龙里县| 茂名市| 余江县| 阳泉市| 张掖市| 尤溪县| 姜堰市| 郁南县| 前郭尔| 嘉定区|