找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: A Panoramic View of Riemannian Geometry; Marcel Berger Book 2003 Springer-Verlag Berlin Heidelberg 2003 Laplace-Beltrami operator.Ricci fl

[復(fù)制鏈接]
樓主: radionuclides
21#
發(fā)表于 2025-3-25 04:28:11 | 只看該作者
22#
發(fā)表于 2025-3-25 08:37:30 | 只看該作者
https://doi.org/10.1007/978-1-349-20201-0rs before discovering this result. It is the kind of theorem which could have waited dozens of years more before being discovered by another mathematician since, unlike so much of intellectual history, it was absolutely not in the air.
23#
發(fā)表于 2025-3-25 12:12:55 | 只看該作者
24#
發(fā)表于 2025-3-25 18:58:19 | 只看該作者
https://doi.org/10.1007/978-1-349-16615-2ibrary around 1960. I should say not only that I liked it, but also that I found it very motivating and frequently advertised it. Moreover, the question is the first problem in the problem list Yau [1296]. It is only recently that I discovered that the question of best metric was posed much earlier by Hopf in Hopf 1932 [730], page 220.
25#
發(fā)表于 2025-3-25 20:48:52 | 只看該作者
26#
發(fā)表于 2025-3-26 01:27:14 | 只看該作者
B. D. Vujanovic,T. M. Atanackovicnly certain sorts of noncompact Riemannian manifolds to have a hope of obtaining results. Let us mention in particular the possibilities of examining manifolds with finite volume, those with prescribed asymptotic behaviour at infinity, for example quadratic decay,. quadratic curvature decay, volume behaviour, Euclidean asymptoticity, etc.
27#
發(fā)表于 2025-3-26 04:33:39 | 只看該作者
Jonathan M. Borwein,Matthew P. SkerrittEuclidean geomeltry and the geometry of surfaces in E. that we looked at in the preceeding chapter turn out to be quite unsatisfactory for many reasons. We will review some of them here; they are not all logically related.
28#
發(fā)表于 2025-3-26 12:23:06 | 只看該作者
29#
發(fā)表于 2025-3-26 13:22:17 | 只看該作者
B. D. Vujanovic,T. M. AtanackovicIn this chapter, up to and including §13.4, manifolds need not be compact, or even complete, but must have no boundary. Starting in §13.5, manifolds are once again assumed compact without boundary, unless otherwise stated.
30#
發(fā)表于 2025-3-26 19:40:56 | 只看該作者
B. D. Vujanovic,T. M. AtanackovicWe cannot give comprehensive references for this chapter, especially for the generalities. They appear in every book on differential geometry and Riemannian geometry. Only in some special instances will we give references.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 04:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
夏邑县| 陆丰市| 新兴县| 方山县| 垫江县| 永泰县| 河东区| 京山县| 浑源县| 玉屏| 文水县| 屯门区| 双江| 永平县| 鹤岗市| 曲阳县| 壶关县| 漳州市| 拜泉县| 太保市| 桃源县| 筠连县| 资源县| 建德市| 都昌县| 伽师县| 衡东县| 仙居县| 西林县| 林西县| 新宁县| 西吉县| 鸡西市| 吉安县| 隆昌县| 沧源| 扬中市| 龙山县| 泸水县| 洛隆县| 定襄县|