找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: A Panoramic View of Riemannian Geometry; Marcel Berger Book 2003 Springer-Verlag Berlin Heidelberg 2003 Laplace-Beltrami operator.Ricci fl

[復(fù)制鏈接]
查看: 48574|回復(fù): 52
樓主
發(fā)表于 2025-3-21 17:31:08 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱A Panoramic View of Riemannian Geometry
影響因子2023Marcel Berger
視頻videohttp://file.papertrans.cn/142/141622/141622.mp4
發(fā)行地址Includes supplementary material:
圖書(shū)封面Titlebook: A Panoramic View of Riemannian Geometry;  Marcel Berger Book 2003 Springer-Verlag Berlin Heidelberg 2003 Laplace-Beltrami operator.Ricci fl
影響因子Riemannian geometry has today become a vast and important subject. This new book of Marcel Berger sets out to introduce readers to most of the living topics of the field and convey them quickly to the main results known to date. These results are stated without detailed proofs but the main ideas involved are described and motivated. This enables the reader to obtain a sweeping panoramic view of almost the entirety of the field. However, since a Riemannian manifold is, even initially, a subtle object, appealing to highly non-natural concepts, the first three chapters devote themselves to introducing the various concepts and tools of Riemannian geometry in the most natural and motivating way, following in particular Gauss and Riemann.
Pindex Book 2003
The information of publication is updating

書(shū)目名稱A Panoramic View of Riemannian Geometry影響因子(影響力)




書(shū)目名稱A Panoramic View of Riemannian Geometry影響因子(影響力)學(xué)科排名




書(shū)目名稱A Panoramic View of Riemannian Geometry網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱A Panoramic View of Riemannian Geometry網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱A Panoramic View of Riemannian Geometry被引頻次




書(shū)目名稱A Panoramic View of Riemannian Geometry被引頻次學(xué)科排名




書(shū)目名稱A Panoramic View of Riemannian Geometry年度引用




書(shū)目名稱A Panoramic View of Riemannian Geometry年度引用學(xué)科排名




書(shū)目名稱A Panoramic View of Riemannian Geometry讀者反饋




書(shū)目名稱A Panoramic View of Riemannian Geometry讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:35:35 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:58:25 | 只看該作者
地板
發(fā)表于 2025-3-22 08:09:32 | 只看該作者
to introduce readers to most of the living topics of the field and convey them quickly to the main results known to date. These results are stated without detailed proofs but the main ideas involved are described and motivated. This enables the reader to obtain a sweeping panoramic view of almost th
5#
發(fā)表于 2025-3-22 10:38:18 | 只看該作者
6#
發(fā)表于 2025-3-22 13:16:38 | 只看該作者
An Introduction to Modern Political Theoryiemannian metrics. The notion of smooth manifold is at the same time extremely natural and quite hard to define correctly. This notion started with Riemann in 1854 and was widely used. Hermann Weyl was the first to lay down solid foundations for this notion in 1923. The definition became completely clear in the famous article Whitney 1936 [1259].
7#
發(fā)表于 2025-3-22 19:54:14 | 只看該作者
8#
發(fā)表于 2025-3-22 22:28:12 | 只看該作者
three chapters devote themselves to introducing the various concepts and tools of Riemannian geometry in the most natural and motivating way, following in particular Gauss and Riemann.978-3-642-62121-5978-3-642-18245-7
9#
發(fā)表于 2025-3-23 03:02:03 | 只看該作者
10#
發(fā)表于 2025-3-23 06:11:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 20:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兴安盟| 新乡市| 天峨县| 沈阳市| 太和县| 宝兴县| 宝应县| 伊通| 义乌市| 桃园县| 乐亭县| 介休市| 大宁县| 永康市| 瓦房店市| 焦作市| 化隆| 峨边| 盐津县| 十堰市| 滨州市| 万荣县| 中卫市| 遵义县| 姜堰市| 贡觉县| 溧阳市| 旬阳县| 三原县| 留坝县| 高唐县| 汾西县| 泰兴市| 繁昌县| 米林县| 项城市| 翁牛特旗| 东乡县| 同仁县| 西贡区| 朝阳市|