找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Nonlinear Transfer Technique for Renorming; Aníbal Moltó,José Orihuela,Manuel Valdivia Book 2009 Springer-Verlag Berlin Heidelberg 2009

[復(fù)制鏈接]
查看: 21504|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:19:05 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱A Nonlinear Transfer Technique for Renorming
影響因子2023Aníbal Moltó,José Orihuela,Manuel Valdivia
視頻videohttp://file.papertrans.cn/142/141605/141605.mp4
發(fā)行地址Includes supplementary material:
學(xué)科分類Lecture Notes in Mathematics
圖書封面Titlebook: A Nonlinear Transfer Technique for Renorming;  Aníbal Moltó,José Orihuela,Manuel Valdivia Book 2009 Springer-Verlag Berlin Heidelberg 2009
影響因子.Abstract topological tools from generalized metric spaces are applied in this volume to the construction of locally uniformly rotund norms on Banach spaces. The book offers new techniques for renorming problems, all of them based on a network analysis for the topologies involved inside the problem...Maps from a normed space X to a metric space Y, which provide locally uniformly rotund renormings on X, are studied and a new frame for the theory is obtained, with interplay between functional analysis, optimization and topology using subdifferentials of Lipschitz functions and covering methods of metrization theory. Any one-to-one operator T from a reflexive space X into c.0. (T) satisfies the authors‘ conditions, transferring the norm to X. Nevertheless the authors‘ maps can be far from linear, for instance the duality map from X to X* gives a non-linear example when the norm in X is Fréchet differentiable...This volume will be interesting for the broad spectrum of specialists working in Banach space theory, and for researchers in infinite dimensional functional analysis..
Pindex Book 2009
The information of publication is updating

書目名稱A Nonlinear Transfer Technique for Renorming影響因子(影響力)




書目名稱A Nonlinear Transfer Technique for Renorming影響因子(影響力)學(xué)科排名




書目名稱A Nonlinear Transfer Technique for Renorming網(wǎng)絡(luò)公開度




書目名稱A Nonlinear Transfer Technique for Renorming網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱A Nonlinear Transfer Technique for Renorming被引頻次




書目名稱A Nonlinear Transfer Technique for Renorming被引頻次學(xué)科排名




書目名稱A Nonlinear Transfer Technique for Renorming年度引用




書目名稱A Nonlinear Transfer Technique for Renorming年度引用學(xué)科排名




書目名稱A Nonlinear Transfer Technique for Renorming讀者反饋




書目名稱A Nonlinear Transfer Technique for Renorming讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:11:37 | 只看該作者
Lecture Notes in Mathematicshttp://image.papertrans.cn/a/image/141605.jpg
板凳
發(fā)表于 2025-3-22 02:38:53 | 只看該作者
https://doi.org/10.1007/978-3-642-32557-1 nevertheless the main contribution are presented in 2.4–2.7 and our main tool will be Theorem 2.32. An important concept will be the .-continuity of a map Φ from a topological space . into a metric space .. The .-continuity property is an extension of continuity suitable to deal with countable deco
地板
發(fā)表于 2025-3-22 04:51:35 | 只看該作者
5#
發(fā)表于 2025-3-22 09:24:54 | 只看該作者
6#
發(fā)表于 2025-3-22 16:52:52 | 只看該作者
7#
發(fā)表于 2025-3-22 20:45:17 | 只看該作者
8#
發(fā)表于 2025-3-23 00:18:33 | 只看該作者
9#
發(fā)表于 2025-3-23 01:28:20 | 只看該作者
Radiative Transfer and Heat Conduction,Renorming in Banach space theory involves finding isomorphisms which improve the norm. That means making the geometrical and topological properties of the unit ball of a given Banach space as close as possible to those of the unit ball in a Hilbert space.
10#
發(fā)表于 2025-3-23 07:26:19 | 只看該作者
https://doi.org/10.1007/978-3-031-02536-5All examples of .-slicely continuous maps are connected somehow with LUR Banach spaces. It is clear that if x is a denting point of a set . and Φ is a norm continuous map at x then Φ is slicely continuous at x. Hence if . is a LUR normed space then every norm continuous map Φ on .. is slicely continuous on ...
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 07:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东乌珠穆沁旗| 乌拉特后旗| 柳林县| 莆田市| 平凉市| 信宜市| 南靖县| 肇庆市| 英吉沙县| 江口县| 蕉岭县| 土默特右旗| 通化市| 贞丰县| 磐石市| 芜湖市| 皋兰县| 安宁市| 乃东县| 安平县| 外汇| 许昌县| 漾濞| 黄大仙区| 浮梁县| 琼中| 五台县| 万年县| 宕昌县| 商水县| 宕昌县| 揭东县| 内黄县| 和平区| 万荣县| 格尔木市| 科尔| 正蓝旗| 杭锦后旗| 扶余县| 天峨县|