找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: A Modern View of the Riemann Integral; Alberto Torchinsky Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive licen

[復(fù)制鏈接]
樓主: MEDAL
11#
發(fā)表于 2025-3-23 13:19:34 | 只看該作者
12#
發(fā)表于 2025-3-23 13:51:20 | 只看該作者
https://doi.org/10.1007/978-3-540-77869-1 of 1853. He had spent 30 months working on the dissertation, and in the fourth section, entitled “Ueber den Begriff eines bestimmten Integrals und den Umfang seiner Gültigkeit” (“On a notion of a definite integral and the scope of its validity”), Riemann introduced the following condition for a fun
13#
發(fā)表于 2025-3-23 19:30:35 | 只看該作者
14#
發(fā)表于 2025-3-23 23:38:43 | 只看該作者
15#
發(fā)表于 2025-3-24 04:17:39 | 只看該作者
A Modern View of the Riemann Integral978-3-031-11799-2Series ISSN 0075-8434 Series E-ISSN 1617-9692
16#
發(fā)表于 2025-3-24 10:23:27 | 只看該作者
https://doi.org/10.1007/978-3-540-77869-1 of 1853. He had spent 30 months working on the dissertation, and in the fourth section, entitled “Ueber den Begriff eines bestimmten Integrals und den Umfang seiner Gültigkeit” (“On a notion of a definite integral and the scope of its validity”), Riemann introduced the following condition for a function to have an integral on an interval.
17#
發(fā)表于 2025-3-24 13:12:25 | 只看該作者
Alberto TorchinskyShowcases the full capabilities of the Riemann integral from Riemann’s original viewpoint.Establishes new results and methods for approaching computations and applications.Offers numerous historical i
18#
發(fā)表于 2025-3-24 16:07:19 | 只看該作者
19#
發(fā)表于 2025-3-24 20:10:52 | 只看該作者
https://doi.org/10.1007/978-981-19-6215-8In Chap. 3 we prove a basic convergence theorem for the Riemann integral, which, in particular, gives the Riemann–Lebesgue lemma of Fourier series in its various formulations. We also cover the Weierstrass algebraic and polynomial approximation theorems.
20#
發(fā)表于 2025-3-25 00:27:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 07:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
彭水| 河曲县| 平南县| 来凤县| 玉溪市| 赤城县| 呈贡县| 繁峙县| 扎鲁特旗| 南华县| 海阳市| 布拖县| 广西| 榆社县| 云龙县| 通道| 长葛市| 安达市| 庆安县| 叙永县| 东城区| 安龙县| 海安县| 乐山市| 合肥市| 兴业县| 稷山县| 永川市| 北川| 旅游| 荣成市| 大足县| 和硕县| 左权县| 江阴市| 德惠市| 鹿邑县| 钦州市| 佳木斯市| 隆昌县| 河南省|