找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Mathematical Journey to Relativity; Deriving Special and Wladimir-Georges Boskoff,Salvatore Capozziello Textbook 20201st edition The Edit

[復(fù)制鏈接]
樓主: CK828
21#
發(fā)表于 2025-3-25 05:20:28 | 只看該作者
22#
發(fā)表于 2025-3-25 08:50:11 | 只看該作者
Introduction: Hard Talk and Mean Streets,e smooth, i.e. they are indefinitely differentiable functions in one or several variables at each point of their domain of definition. First, we see surfaces in an Euclidean 3-dimensional space and we understand how the Euclidean inner product induces, via the first fundamental form, a way to measur
23#
發(fā)表于 2025-3-25 12:40:01 | 只看該作者
24#
發(fā)表于 2025-3-25 16:03:29 | 只看該作者
25#
發(fā)表于 2025-3-25 21:47:17 | 只看該作者
Nobrow: Contents and Discontents,the objects are at rest (or they change their position) is the Euclidean 3-dimensional space .. All objects, regardless of size, can be identified as points with a given mass in the previous space. So, the Euclidean frame of coordinates . becomes the absolute place where all is happening. Newtonian
26#
發(fā)表于 2025-3-26 01:10:31 | 只看該作者
Bruce Tucker,Priscilla L. Waltonential. From the point of view of this book, this can be considered a full geometric realization of the relativistic approach. The affine space-like spheres can be seen as the regions of the Minkowski space-like vectors characterized by a constant Minkowski gravitational potential. They highlight, f
27#
發(fā)表于 2025-3-26 07:23:34 | 只看該作者
28#
發(fā)表于 2025-3-26 10:32:41 | 只看該作者
UNITEXT for Physicshttp://image.papertrans.cn/a/image/141404.jpg
29#
發(fā)表于 2025-3-26 15:57:37 | 只看該作者
30#
發(fā)表于 2025-3-26 20:14:08 | 只看該作者
https://doi.org/10.1057/9781137463609g is related to the fact that it exists a common part for Euclidean and Non-Euclidean Geometry, the so called Absolute Geometry. Roughly speaking, the Absolute Geometry consists in all theorems that can be thought and proved using the axiomatic system before introducing a parallelism axiom.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 21:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
尉犁县| 宜丰县| 三穗县| 莎车县| 牡丹江市| 新宾| 石林| 樟树市| 老河口市| 东明县| 河曲县| 平果县| 永嘉县| 离岛区| 甘谷县| 汉沽区| 长葛市| 泰顺县| 宁德市| 琼中| 张家港市| 镇赉县| 理塘县| 台北市| 乌拉特前旗| 汶川县| 油尖旺区| 同德县| 阳曲县| 汝州市| 蓝田县| 出国| 尚义县| 崇明县| 来安县| 监利县| 柳江县| 凤冈县| 姚安县| 武隆县| 绥宁县|