找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Mathematical Introduction to Conformal Field Theory; Based on a Series of Martin Schottenloher Book 19971st edition Springer-Verlag Berli

[復(fù)制鏈接]
樓主: energy
11#
發(fā)表于 2025-3-23 11:13:21 | 只看該作者
12#
發(fā)表于 2025-3-23 14:08:32 | 只看該作者
A Mathematical Introduction to Conformal Field Theory978-3-540-70690-8Series ISSN 0940-7677
13#
發(fā)表于 2025-3-23 21:17:48 | 只看該作者
Gerald L. Gutek,Patricia A. Gutek]. We will assume the Euclidean signature (+, +) on ?. (or on surfaces), as it is customary because of the close connection of conformal field theory to statistical mechanics (cf. [BPZ84] and [Gin89]).
14#
發(fā)表于 2025-3-23 23:59:41 | 只看該作者
The Nature of our Contemporary Conditionit has close connections to string theory and other two-dimensional field theories in physics (cf. e.g. [LPSA94]). In particular, all massless field theories are conformally invariant. The special feature of conformal field theory in two dimensions is the existence of an infinite number of independe
15#
發(fā)表于 2025-3-24 03:28:37 | 只看該作者
https://doi.org/10.1057/9781403984364e, every finite-dimensional Lie group . has a corresponding Lie algebra Lie . determined up to isomorphism, and every differentiable homomorphism . : . → . of Lie groups induces a Lie-algebra homomorphism Lie . = ? : Lie . → Lie .. Conversely, if . is connected and simply connected, every such Lie-a
16#
發(fā)表于 2025-3-24 08:14:05 | 只看該作者
17#
發(fā)表于 2025-3-24 14:03:46 | 只看該作者
18#
發(fā)表于 2025-3-24 15:59:03 | 只看該作者
19#
發(fā)表于 2025-3-24 21:00:04 | 只看該作者
Gerald L. Gutek,Patricia A. Gutek. With respect to a suitable mathematical interpretation, the Verlinde formula gives the dimensions of spaces of generalized theta functions (cf. Sect. 10.1). These dimensions and their polynomial behavior (cf. Theorem 10.6) are of special interest in mathematics. Prior to the appearance of the Verl
20#
發(fā)表于 2025-3-25 03:04:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 17:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东阿县| 尉犁县| 水富县| 临猗县| 建宁县| 家居| 新民市| 陆丰市| 灵寿县| 象州县| 阳新县| 萨嘎县| 临湘市| 榆社县| 卢湾区| 廉江市| 双鸭山市| 石首市| 辽源市| 连南| 时尚| 会昌县| 武胜县| 林口县| 玉树县| 威信县| 城固县| 朝阳县| 辽中县| 贵定县| 台山市| 云南省| 广水市| 蕉岭县| 万全县| 满洲里市| 揭西县| 五台县| 濮阳县| 高州市| 长岛县|