找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Ludic Journey into Geometric Topology; Ton Marar Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to S

[復(fù)制鏈接]
樓主: Pessimistic
11#
發(fā)表于 2025-3-23 11:11:38 | 只看該作者
http://image.papertrans.cn/a/image/141367.jpg
12#
發(fā)表于 2025-3-23 15:56:06 | 只看該作者
https://doi.org/10.1007/978-3-319-11866-6f non-Euclidean geometries. In 1872, Felix Klein presented a way to define geometries without axioms, organizing the space in congruence classes, allowing a multitude of geometries defined in a given space. Klein’s program inaugurated a kind of postmodernity in geometry.
13#
發(fā)表于 2025-3-23 19:35:01 | 只看該作者
https://doi.org/10.1007/978-3-319-11866-6study of Einstein’s general relativity and, by the end of the century, material science Nobel prize winners benefited from the topological classification of surfaces. Here, using surface planar models and word representation, we show how to identify some surfaces.
14#
發(fā)表于 2025-3-23 23:41:12 | 只看該作者
https://doi.org/10.1007/978-3-319-11866-6e. Here we describe a four-dimensional place; that is, a portion of a four-dimensional space enclosed by a hypercube. Although we cannot physically enter a four-dimensional place, we can imagine it. There is no magic portal from one world to another of higher dimension.
15#
發(fā)表于 2025-3-24 05:10:14 | 只看該作者
16#
發(fā)表于 2025-3-24 10:04:37 | 只看該作者
17#
發(fā)表于 2025-3-24 13:20:38 | 只看該作者
Advanced Technologies and Societal ChangeFrom Plato to Kepler, some famous philosophers, scientists and alchemists using a remarkable blend of mathematics and faith try to explain the creation of the universe. They make geometric descriptions of allegedly fundamental ingredients of a harmonious cosmos, sometimes scientifically, others poetically.
18#
發(fā)表于 2025-3-24 16:14:46 | 只看該作者
Andreas Fink,Johannes Lange,Helmut BeikirchClosed non-orientable surfaces are connected sum of projective planes. Here we construct the classical models of the projective plane in three-dimensional space; namely, the sphere with cross-cap, the Steiner Roman surface and the Boy surface.
19#
發(fā)表于 2025-3-24 19:31:45 | 只看該作者
20#
發(fā)表于 2025-3-25 01:33:46 | 只看該作者
6樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 17:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海兴县| 眉山市| 台湾省| 奉贤区| 广安市| 武川县| 镇平县| 马龙县| 会泽县| 安化县| 浙江省| 紫云| 蒙山县| 普宁市| 惠州市| 平邑县| 和林格尔县| 葵青区| 宜良县| 丰县| 噶尔县| 邵武市| 阿克| 原阳县| 陇川县| 云和县| 晋州市| 华容县| 霍州市| 封丘县| 石林| 万年县| 姚安县| 太谷县| 崇左市| 班玛县| 大田县| 临夏县| 定南县| 南华县| 宁蒗|