找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Kaleidoscopic View of Graph Colorings; Ping Zhang Book 2016 The Author 2016 chromatic graph theory.chromatic index.chromatic number.edge

[復(fù)制鏈接]
樓主: 助手
31#
發(fā)表于 2025-3-26 23:42:56 | 只看該作者
Frances Stewart,Sanjaya Lall,Samuel Wangwesh this. On the other hand, if the goal of a graph coloring is only to distinguish every two adjacent vertices in . by means of a vertex coloring, then, of course, this can be accomplished by means of a proper coloring of . and the minimum number of colors needed to do this is the . of .. Among the
32#
發(fā)表于 2025-3-27 01:40:11 | 只看該作者
https://doi.org/10.1007/978-1-349-12255-4he color of a vertex is the set of colors of the neighbors of the vertex. In this chapter, proper vertex colorings are also discussed that arise from nonproper vertex colorings but here they are defined in terms of multisets rather than sets.
33#
發(fā)表于 2025-3-27 07:48:06 | 只看該作者
34#
發(fā)表于 2025-3-27 13:22:17 | 只看該作者
35#
發(fā)表于 2025-3-27 13:45:22 | 只看該作者
36#
發(fā)表于 2025-3-27 17:57:57 | 只看該作者
https://doi.org/10.1007/978-3-642-34946-1 coloring of . whose colors are (. + 1)-tuples of nonnegative integers. In this chapter, we discuss the corresponding (. + 1)-tuples when the original coloring is a nonproper coloring. This gives rise to vertex-distinguishing colorings called recognizable colorings.
37#
發(fā)表于 2025-3-27 21:55:16 | 只看該作者
38#
發(fā)表于 2025-3-28 04:43:06 | 只看該作者
39#
發(fā)表于 2025-3-28 06:48:39 | 只看該作者
https://doi.org/10.1007/978-981-10-3467-1In this chapter we describe yet another proper vertex coloring induced by a given nonproper vertex coloring of a graph. This proper vertex coloring is defined with the aid of distances and this too may very well require fewer colors than the chromatic number of the graph.
40#
發(fā)表于 2025-3-28 13:18:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 12:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江津市| 易门县| 白城市| 巩留县| 兴城市| 连平县| 鲜城| 准格尔旗| 冷水江市| 四川省| 柳州市| 个旧市| 天等县| 余江县| 新安县| 海门市| 牡丹江市| 新宾| 白河县| 益阳市| 阜南县| 门源| 罗定市| 东宁县| 巴南区| 蛟河市| 凤山市| 宜州市| 个旧市| 长泰县| 安塞县| 博乐市| 横峰县| 西畴县| 广宗县| 天门市| 永胜县| 岳普湖县| 姜堰市| 天全县| 岳普湖县|