找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Kaleidoscopic View of Graph Colorings; Ping Zhang Book 2016 The Author 2016 chromatic graph theory.chromatic index.chromatic number.edge

[復制鏈接]
樓主: 助手
31#
發(fā)表于 2025-3-26 23:42:56 | 只看該作者
Frances Stewart,Sanjaya Lall,Samuel Wangwesh this. On the other hand, if the goal of a graph coloring is only to distinguish every two adjacent vertices in . by means of a vertex coloring, then, of course, this can be accomplished by means of a proper coloring of . and the minimum number of colors needed to do this is the . of .. Among the
32#
發(fā)表于 2025-3-27 01:40:11 | 只看該作者
https://doi.org/10.1007/978-1-349-12255-4he color of a vertex is the set of colors of the neighbors of the vertex. In this chapter, proper vertex colorings are also discussed that arise from nonproper vertex colorings but here they are defined in terms of multisets rather than sets.
33#
發(fā)表于 2025-3-27 07:48:06 | 只看該作者
34#
發(fā)表于 2025-3-27 13:22:17 | 只看該作者
35#
發(fā)表于 2025-3-27 13:45:22 | 只看該作者
36#
發(fā)表于 2025-3-27 17:57:57 | 只看該作者
https://doi.org/10.1007/978-3-642-34946-1 coloring of . whose colors are (. + 1)-tuples of nonnegative integers. In this chapter, we discuss the corresponding (. + 1)-tuples when the original coloring is a nonproper coloring. This gives rise to vertex-distinguishing colorings called recognizable colorings.
37#
發(fā)表于 2025-3-27 21:55:16 | 只看該作者
38#
發(fā)表于 2025-3-28 04:43:06 | 只看該作者
39#
發(fā)表于 2025-3-28 06:48:39 | 只看該作者
https://doi.org/10.1007/978-981-10-3467-1In this chapter we describe yet another proper vertex coloring induced by a given nonproper vertex coloring of a graph. This proper vertex coloring is defined with the aid of distances and this too may very well require fewer colors than the chromatic number of the graph.
40#
發(fā)表于 2025-3-28 13:18:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 14:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
綦江县| 黄平县| 东阿县| 霍城县| 林芝县| 德庆县| 香河县| 白山市| 深泽县| 宁城县| 霍林郭勒市| 齐河县| 巫山县| 喜德县| 正阳县| 孟津县| 封丘县| 高青县| 元谋县| 中西区| 肃南| 洛川县| 四会市| 邢台县| 桂林市| 肇州县| 内丘县| 平南县| 甘谷县| 珲春市| 玛纳斯县| 铜鼓县| 延安市| 迭部县| 邯郸市| 屯门区| 雅江县| 宁南县| 婺源县| 高碑店市| 武邑县|