找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Kaleidoscopic View of Graph Colorings; Ping Zhang Book 2016 The Author 2016 chromatic graph theory.chromatic index.chromatic number.edge

[復制鏈接]
樓主: 助手
31#
發(fā)表于 2025-3-26 23:42:56 | 只看該作者
Frances Stewart,Sanjaya Lall,Samuel Wangwesh this. On the other hand, if the goal of a graph coloring is only to distinguish every two adjacent vertices in . by means of a vertex coloring, then, of course, this can be accomplished by means of a proper coloring of . and the minimum number of colors needed to do this is the . of .. Among the
32#
發(fā)表于 2025-3-27 01:40:11 | 只看該作者
https://doi.org/10.1007/978-1-349-12255-4he color of a vertex is the set of colors of the neighbors of the vertex. In this chapter, proper vertex colorings are also discussed that arise from nonproper vertex colorings but here they are defined in terms of multisets rather than sets.
33#
發(fā)表于 2025-3-27 07:48:06 | 只看該作者
34#
發(fā)表于 2025-3-27 13:22:17 | 只看該作者
35#
發(fā)表于 2025-3-27 13:45:22 | 只看該作者
36#
發(fā)表于 2025-3-27 17:57:57 | 只看該作者
https://doi.org/10.1007/978-3-642-34946-1 coloring of . whose colors are (. + 1)-tuples of nonnegative integers. In this chapter, we discuss the corresponding (. + 1)-tuples when the original coloring is a nonproper coloring. This gives rise to vertex-distinguishing colorings called recognizable colorings.
37#
發(fā)表于 2025-3-27 21:55:16 | 只看該作者
38#
發(fā)表于 2025-3-28 04:43:06 | 只看該作者
39#
發(fā)表于 2025-3-28 06:48:39 | 只看該作者
https://doi.org/10.1007/978-981-10-3467-1In this chapter we describe yet another proper vertex coloring induced by a given nonproper vertex coloring of a graph. This proper vertex coloring is defined with the aid of distances and this too may very well require fewer colors than the chromatic number of the graph.
40#
發(fā)表于 2025-3-28 13:18:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 14:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
清水河县| 锡林郭勒盟| 连城县| 千阳县| 惠东县| 清水县| 泰和县| 阳曲县| 眉山市| 伊金霍洛旗| 乌鲁木齐市| 岳普湖县| 北碚区| 泰和县| 南京市| 岳西县| 温泉县| 新乡县| 外汇| 岑巩县| 临泉县| 永平县| 鄂托克前旗| 闽清县| 普安县| 香港 | 蕲春县| 仁怀市| 岢岚县| 韶关市| 玉树县| 定州市| 泽州县| 响水县| 武鸣县| 思茅市| 黄陵县| 吉木萨尔县| 长白| 宝应县| 赣榆县|