期刊全稱 | A High-Rate Virtual Instrument of Marine Vehicle Motions for Underwater Navigation and Ocean Remote | 影響因子2023 | Chrystel Gelin | 視頻video | http://file.papertrans.cn/142/141068/141068.mp4 | 發(fā)行地址 | Recent research on navigation control of underwater vehicles.A low cost high rate motion measurement system for unmanned surface vehicle with underwater and oceanographic purposes is proposed.This stu | 學科分類 | Springer Series on Naval Architecture, Marine Engineering, Shipbuilding and Shipping | 圖書封面 |  | 影響因子 | .Dead-Reckoning aided with Doppler velocity measurement has been the most common method for underwater navigation for small vehicles. Unfortunately DR requires frequent position recalibrations and underwater vehicle navigation systems are limited to periodic position update when they surface. Finally standard Global Positioning System (GPS) receivers are unable to provide the rate or precision required when used on a small vessel. To overcome this, a low cost high rate motion measurement system for an Unmanned Surface Vehicle (USV) with underwater and oceanographic purposes is proposed. The proposed onboard system for the USV consists of an Inertial Measurement Unit (IMU) with accelerometers and rate gyros, a GPS receiver, a flux-gate compass, a roll and tilt sensor and an ADCP. Interfacing all the sensors proved rather challenging because of their different characteristics. The proposed data fusion technique integrates the sensors and develops an embeddable software package, using real time data fusion methods, for a USV to aid in navigation and control as well as controlling an onboard Acoustic Doppler Current Profiler (ADCP). While ADCPs non-intrusively measure water flow, the v | Pindex | Book 2013 |
The information of publication is updating
|
|