找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Guide to Penrose Tilings; Francesco D‘Andrea Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive license to Sprin

[復制鏈接]
樓主: deflate
21#
發(fā)表于 2025-3-25 07:19:39 | 只看該作者
Continuous Transformation Groups,elf-contained introduction to Bratteli diagrams, AF equivalence relations, AF algebras and their K-theory, and their use in the classification of minimal Cantor systems, such as the one parameterizing Penrose tilings. We will take for granted some basic results about K-theory and assume that the reader has some familiarity with C*-algebras.
22#
發(fā)表于 2025-3-25 09:54:11 | 只看該作者
Book 2023in the ‘70s. Quasi-periodic tilings of the plane, of which Penrose tilings are the most famous example, started as recreational mathematics and soon attracted the interest of scientists for their possible application in the description of quasi-crystals. The purpose of this survey, illustrated with
23#
發(fā)表于 2025-3-25 11:45:48 | 只看該作者
Book 2023more than 200 figures, is to introduce the curious reader to this beautiful topic and be a reference for some proofs that are not easy to find in the literature. The volume covers many aspects of Penrose tilings, including the study, from the point of view of Connes‘ Noncommutative Geometry, of the space parameterizing these tilings..
24#
發(fā)表于 2025-3-25 19:40:09 | 只看該作者
ns an overview of the tools from noncommutative geometry nee.This book provides an elementary introduction, complete with detailed proofs, to the celebrated tilings of the plane discovered by Sir Roger Penrose in the ‘70s. Quasi-periodic tilings of the plane, of which Penrose tilings are the most fa
25#
發(fā)表于 2025-3-25 20:51:16 | 只看該作者
26#
發(fā)表于 2025-3-26 01:07:57 | 只看該作者
27#
發(fā)表于 2025-3-26 07:52:52 | 只看該作者
28#
發(fā)表于 2025-3-26 09:49:42 | 只看該作者
29#
發(fā)表于 2025-3-26 13:20:18 | 只看該作者
30#
發(fā)表于 2025-3-26 20:19:23 | 只看該作者
Robinson Triangles,s and was more concerned with the measurement of material properties, such as eddy-current loss and permeability, than with what was then the very new concept of domain wall motion. A valuable review of the beginnings of a more microscopic approach to these problems has been given by Kittel (1946a)
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 17:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
营口市| 自贡市| 金坛市| 安平县| 巫溪县| 潜江市| 醴陵市| 庐江县| 昌宁县| 冷水江市| 烟台市| 婺源县| 平阳县| 旅游| 自贡市| 宜宾市| 永宁县| 武山县| 虞城县| 桓台县| 玉溪市| 北京市| 东乡县| 酒泉市| 上杭县| 金堂县| 遂平县| 临桂县| 中山市| 合水县| 定州市| 彝良县| 台江县| 衡水市| 翁牛特旗| 安徽省| 慈溪市| 阜城县| 横山县| 裕民县| 沁水县|