找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Guide to Penrose Tilings; Francesco D‘Andrea Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive license to Sprin

[復(fù)制鏈接]
樓主: deflate
11#
發(fā)表于 2025-3-23 12:07:37 | 只看該作者
Deformations of irregular threefolds,study the local and global properties of tilings with Robinson triangles, present the two fundamental operations of . and ., and give several explicit examples. In the second half of the chapter we explain how to use index sequences to classify tilings with Robinson triangles and prove a celebrated
12#
發(fā)表于 2025-3-23 16:13:54 | 只看該作者
Plane forms and multiple-point formulas,se the preliminary study of Robinson triangles in Chap.?3 to prove several local and global properties of Penrose tilings. We discuss . and their relation to some one-dimensional non-periodic tilings called .. We discuss . and their properties and prove, using ribbons, that tiles in a Penrose tiling
13#
發(fā)表于 2025-3-23 19:39:07 | 只看該作者
Plane forms and multiple-point formulas,ose tilings. Here, we learn how to transform a . into a Penrose tiling. We discuss the ., first for one-dimensional tilings and then for Penrose tilings. We learn how to construct a Fibonacci tiling by projecting a portion of a 2-dimensional lattice on a line, and how to construct a tiling by Penros
14#
發(fā)表于 2025-3-24 00:00:50 | 只看該作者
15#
發(fā)表于 2025-3-24 03:49:00 | 只看該作者
16#
發(fā)表于 2025-3-24 07:31:49 | 只看該作者
17#
發(fā)表于 2025-3-24 14:42:27 | 只看該作者
https://doi.org/10.1007/978-3-031-28428-1Penrose Tilings; Aperiodic Prototiles; Robinson Triangles; Tilings and Puzzles; The Extension Theorem; Co
18#
發(fā)表于 2025-3-24 16:41:29 | 只看該作者
978-3-031-28430-4The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
19#
發(fā)表于 2025-3-24 19:47:37 | 只看該作者
20#
發(fā)表于 2025-3-25 02:16:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 21:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
万州区| 垫江县| 平原县| 根河市| 定安县| 凤山市| 太仆寺旗| 威远县| 莱州市| 固始县| 沿河| 澄江县| 巴东县| 华池县| 莱西市| 正安县| 安达市| 江永县| 宽城| 兰溪市| 东阿县| 永城市| 吉木乃县| 博白县| 阿图什市| 额敏县| 汾西县| 柳林县| 靖宇县| 敖汉旗| 谢通门县| 兴城市| 铁岭市| 聂荣县| 离岛区| 黄冈市| 武川县| 普宁市| 汤原县| 雷波县| 古田县|