找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: A First Course in Multivariate Statistics; Bernard Flury Textbook 1997 Springer Science+Business Media New York 1997 Multivariate statisti

[復(fù)制鏈接]
樓主: HEMI
21#
發(fā)表于 2025-3-25 04:38:04 | 只看該作者
22#
發(fā)表于 2025-3-25 08:08:45 | 只看該作者
https://doi.org/10.1007/978-3-658-26522-9Before introducing the multivariate normal distribution, let us briefly review some important results about the univariate normal.
23#
發(fā)表于 2025-3-25 13:18:11 | 只看該作者
https://doi.org/10.1007/978-3-658-26522-9ng one variable at a time may not be optimal for classification purposes. Hence, it is important that we establish some terminology and acquire a basic knowledge of bivariate and multivariate distribution theory. In particular, we shall discuss notions such as independence of random variables, covar
24#
發(fā)表于 2025-3-25 18:19:35 | 只看該作者
https://doi.org/10.1007/978-3-658-26522-9ertain distributions, and try to find out what is likely to happen and what is unlikely. Conversely, in statistics we observe data and try to find out which distribution generated the data. In the words of my colleague R.B. Fisher: “In probability, God gives us the parameters and we figure out what
25#
發(fā)表于 2025-3-25 20:51:49 | 只看該作者
https://doi.org/10.1007/978-3-658-26522-9tly descriptive level, ignoring questions of statistical inference. The mathematical level of Chapter 5 is moderate, and all concepts are explained at great length, hoping that even students without a strong mathematical background will be able to master most of the material. Chapter 6 gives an intr
26#
發(fā)表于 2025-3-26 02:01:38 | 只看該作者
27#
發(fā)表于 2025-3-26 08:22:58 | 只看該作者
28#
發(fā)表于 2025-3-26 09:29:08 | 只看該作者
https://doi.org/10.1007/978-3-322-82403-5 on the aspect of approximation: Given a .-variate random vector (or a “system of points in space,” in Pearson’s terminology), find an optimal approximation in a linear subspace of lower dimension. More specifically, Pearson studied the problem of fitting a line to multivariate data so as to minimiz
29#
發(fā)表于 2025-3-26 15:47:18 | 只看該作者
,Den Endspurt intelligent managen — das ,e of normal components. An introductory example has already been given in Chapter 1 (Example 1.3) and has been discussed to some extent in Section 2.8, where the relevant terminology has been established. Before turning to the mathematical setup, let us look at yet another example to motivate the th
30#
發(fā)表于 2025-3-26 17:04:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 07:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邵东县| 彭泽县| 资溪县| 沙洋县| 盐源县| 广水市| 桓台县| 左云县| 象州县| 阳东县| 辽中县| 林周县| 兴和县| 贞丰县| 本溪市| 施秉县| 江口县| 东宁县| 秭归县| 贡嘎县| 永康市| 许昌县| 兰溪市| 怀远县| 大石桥市| 昆明市| 和龙市| 方正县| 故城县| 怀安县| 长治市| 澄城县| 拜城县| 古浪县| 海淀区| 蚌埠市| 承德市| 惠水县| 天峻县| 辛集市| 桃园县|