找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A First Course in Harmonic Analysis; Anton Deitmar Textbook 2005Latest edition Springer Science+Business Media, LLC, part of Springer Natu

[復(fù)制鏈接]
查看: 12282|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:53:50 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱A First Course in Harmonic Analysis
影響因子2023Anton Deitmar
視頻videohttp://file.papertrans.cn/141/140766/140766.mp4
發(fā)行地址Direct and streamlined approach to central concepts using Riemann integral and metric spaces only
學(xué)科分類Universitext
圖書封面Titlebook: A First Course in Harmonic Analysis;  Anton Deitmar Textbook 2005Latest edition Springer Science+Business Media, LLC, part of Springer Natu
影響因子The second part of the book concludes with Plancherel’s theorem in Chapter 8. This theorem is a generalization of the completeness of the Fourier series, as well as of Plancherel’s theorem for the real line. The third part of the book is intended to provide the reader with a ?rst impression of the world of non-commutative harmonic analysis. Chapter 9 introduces methods that are used in the analysis of matrix groups, such as the theory of the exponential series and Lie algebras. These methods are then applied in Chapter 10 to arrive at a clas- ?cation of the representations of the group SU(2). In Chapter 11 we give the Peter-Weyl theorem, which generalizes the completeness of the Fourier series in the context of compact non-commutative groups and gives a decomposition of the regular representation as a direct sum of irreducibles. The theory of non-compact non-commutative groups is represented by the example of the Heisenberg group in Chapter 12. The regular representation in general decomposes as a direct integral rather than a direct sum. For the Heisenberg group this decomposition is given explicitly. Acknowledgements: I thank Robert Burckel and Alexander Schmidt for their most us
Pindex Textbook 2005Latest edition
The information of publication is updating

書目名稱A First Course in Harmonic Analysis影響因子(影響力)




書目名稱A First Course in Harmonic Analysis影響因子(影響力)學(xué)科排名




書目名稱A First Course in Harmonic Analysis網(wǎng)絡(luò)公開度




書目名稱A First Course in Harmonic Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱A First Course in Harmonic Analysis被引頻次




書目名稱A First Course in Harmonic Analysis被引頻次學(xué)科排名




書目名稱A First Course in Harmonic Analysis年度引用




書目名稱A First Course in Harmonic Analysis年度引用學(xué)科排名




書目名稱A First Course in Harmonic Analysis讀者反饋




書目名稱A First Course in Harmonic Analysis讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:09:26 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:48:42 | 只看該作者
地板
發(fā)表于 2025-3-22 05:31:26 | 只看該作者
5#
發(fā)表于 2025-3-22 11:04:54 | 只看該作者
A First Course in Harmonic Analysis978-0-387-27561-1Series ISSN 0172-5939 Series E-ISSN 2191-6675
6#
發(fā)表于 2025-3-22 16:12:54 | 只看該作者
Textbook 2005Latest editionnted by the example of the Heisenberg group in Chapter 12. The regular representation in general decomposes as a direct integral rather than a direct sum. For the Heisenberg group this decomposition is given explicitly. Acknowledgements: I thank Robert Burckel and Alexander Schmidt for their most us
7#
發(fā)表于 2025-3-22 18:13:02 | 只看該作者
The Fourier Transformieren. Das verst?ndlich geschriebene, exzellent recherchierte Buch liefert spannende neue Erkenntnisse und ist gespickt mit faszinierenden neuen Beispielen aus der Evolutionsbiologie..978-3-662-60915-6
8#
發(fā)表于 2025-3-22 23:01:57 | 只看該作者
9#
發(fā)表于 2025-3-23 02:19:16 | 只看該作者
10#
發(fā)表于 2025-3-23 09:23:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 03:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
焦作市| 顺昌县| 南充市| 德惠市| 衡东县| 高雄县| 海南省| 游戏| 盖州市| 吉首市| 勐海县| 左云县| 大安市| 抚宁县| 盐池县| 巴楚县| 陕西省| 洞头县| 彰化县| 云南省| 盈江县| 云安县| 高安市| 陈巴尔虎旗| 苏尼特右旗| 田林县| 林口县| 威信县| 德化县| 民勤县| 安福县| 榆社县| 安陆市| 台中市| 芦山县| 女性| 惠安县| 思南县| 搜索| 丰原市| 青铜峡市|