找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A First Course in Bayesian Statistical Methods; Peter D. Hoff Textbook 2009 Springer-Verlag New York 2009 Markov chain.Statistical Computi

[復(fù)制鏈接]
查看: 45479|回復(fù): 53
樓主
發(fā)表于 2025-3-21 19:03:41 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱A First Course in Bayesian Statistical Methods
影響因子2023Peter D. Hoff
視頻videohttp://file.papertrans.cn/141/140748/140748.mp4
發(fā)行地址Provides a nice introduction to Bayesian statistics with sufficient grounding in the Bayesian framework without being distracted by more esoteric points.The material is well-organized, weaving applica
學(xué)科分類Springer Texts in Statistics
圖書封面Titlebook: A First Course in Bayesian Statistical Methods;  Peter D. Hoff Textbook 2009 Springer-Verlag New York 2009 Markov chain.Statistical Computi
影響因子.This book provides a compact self-contained introduction to the theory and application of Bayesian statistical methods. The book is accessible to readers having a basic familiarity with probability, yet allows more advanced readers to quickly grasp the principles underlying Bayesian theory and methods. The examples and computer code allow the reader to understand and implement basic Bayesian data analyses using standard statistical models and to extend the standard models to specialized data analysis situations. The book begins with fundamental notions such as probability, exchangeability and Bayes‘ rule, and ends with modern topics such as variable selection in regression, generalized linear mixed effects models, and semiparametric copula estimation. Numerous examples from the social, biological and physical sciences show how to implement these methodologies in practice...Monte Carlo summaries of posterior distributions play an important role in Bayesian data analysis. The open-source R statistical computing environment provides sufficient functionality to make Monte Carlo estimation very easy for a large number of statistical models and example R-code is provided throughout the
Pindex Textbook 2009
The information of publication is updating

書目名稱A First Course in Bayesian Statistical Methods影響因子(影響力)




書目名稱A First Course in Bayesian Statistical Methods影響因子(影響力)學(xué)科排名




書目名稱A First Course in Bayesian Statistical Methods網(wǎng)絡(luò)公開度




書目名稱A First Course in Bayesian Statistical Methods網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱A First Course in Bayesian Statistical Methods被引頻次




書目名稱A First Course in Bayesian Statistical Methods被引頻次學(xué)科排名




書目名稱A First Course in Bayesian Statistical Methods年度引用




書目名稱A First Course in Bayesian Statistical Methods年度引用學(xué)科排名




書目名稱A First Course in Bayesian Statistical Methods讀者反饋




書目名稱A First Course in Bayesian Statistical Methods讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:18:02 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:18:09 | 只看該作者
https://doi.org/10.1007/978-94-007-7557-2e central limit theorem, and another being that the normal model is a simple model with separate parameters for the population mean and variance – two quantities that are often of primary interest. In this chapter we discuss some of the properties of the normal distribution, and show how to make pos
地板
發(fā)表于 2025-3-22 04:41:27 | 只看該作者
AQ Mapping Through Low-Cost Sensor Networks,at it is easy to sample from the full conditional distribution of each parameter. In such cases, posterior approximation can be made with the Gibbs sampler, an iterative algorithm that constructs a dependent sequence of parameter values whose distribution converges to the target joint posterior dist
5#
發(fā)表于 2025-3-22 08:52:01 | 只看該作者
6#
發(fā)表于 2025-3-22 16:11:05 | 只看該作者
Amina Khatun,Trisha Barman,Pulak Kumar Patraaverage and their difference. This type of parameterization is extended to the multigroup case, where the average group mean and the differences across group means are described by a normal sampling model. This model, together with a normal sampling model for variability among units within a group,
7#
發(fā)表于 2025-3-22 17:24:30 | 只看該作者
J. Kukkonen,L. Bozó,F. Palmgren,R. S. Sokhition and data description. In this section we give a very brief introduction to the linear regression model and the corresponding Bayesian approach to estimation. Additionally, we discuss the relationship between Bayesian and ordinary least squares regression estimates.
8#
發(fā)表于 2025-3-22 22:43:24 | 只看該作者
C. Borrego,M. Schatzmann,S. Galmarinisampler. In situations where a conjugate prior distribution is unavailable or undesirable, the full conditional distributions of the parameters do not have a standard form and the Gibbs sampler cannot be easily used. In this section we present the Metropolis-Hastings algorithm as a generic method of
9#
發(fā)表于 2025-3-23 04:09:33 | 只看該作者
10#
發(fā)表于 2025-3-23 09:21:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 21:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
札达县| 互助| 平乐县| 巫山县| 司法| 库车县| 赣州市| 临洮县| 辰溪县| 博乐市| 漯河市| 龙州县| 蒲城县| 靖西县| 榆林市| 金川县| 泉州市| 禹州市| 尤溪县| 永春县| 南岸区| 孝昌县| 新干县| 泾川县| 浠水县| 平安县| 安岳县| 富阳市| 五华县| 铁岭县| 舒城县| 临潭县| 乐清市| 旺苍县| 永济市| 翁牛特旗| 临颍县| 井冈山市| 长治市| 黔江区| 焦作市|