找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Differential Approach to Geometry; Geometric Trilogy II Francis Borceux Book 2014 Springer International Publishing Switzerland 2014 53A0

[復(fù)制鏈接]
樓主: deep-sleep
21#
發(fā)表于 2025-3-25 07:20:20 | 只看該作者
978-3-319-37747-6Springer International Publishing Switzerland 2014
22#
發(fā)表于 2025-3-25 09:53:40 | 只看該作者
Ernst-August Nuppenau,Ousmane Badianeopment of differential calculus allows next the study of very general curves. We describe the first historical attempts for handling questions like the tangent to a curve, its length or its curvature. We pay a special attention to some curves, like the cycloid, which have played an important role in
23#
發(fā)表于 2025-3-25 12:48:32 | 只看該作者
24#
發(fā)表于 2025-3-25 17:33:24 | 只看該作者
25#
發(fā)表于 2025-3-25 21:59:27 | 只看該作者
The Post-Harvest System in Indonesia, vector fields, the covariant derivative, and so on: an intuition based on the consideration of surfaces in the three dimensional real space. We switch next to the study of geodesics, geodesic curvature and systems of geodesic coordinates. As an example of a Riemann surface, we develop the study of
26#
發(fā)表于 2025-3-26 02:48:21 | 只看該作者
27#
發(fā)表于 2025-3-26 06:22:57 | 只看該作者
28#
發(fā)表于 2025-3-26 10:26:01 | 只看該作者
http://image.papertrans.cn/a/image/140681.jpg
29#
發(fā)表于 2025-3-26 13:44:51 | 只看該作者
30#
發(fā)表于 2025-3-26 17:33:37 | 只看該作者
Agricultural Markets from Theory to PracticeCurves in the three dimensional real space are studied from the points of view of their equations, their tangent, their curvature and their torsion. We establish the Frenet formulas and we investigate the more involved question of the intrinsic equations of a skew curve.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 14:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
郎溪县| 那坡县| 常州市| 庐江县| 天全县| 鲜城| 白河县| 西贡区| 镇江市| 山东省| 灵丘县| 林周县| 洛隆县| 邵武市| 修文县| 永春县| 长寿区| 镇远县| 高平市| 登封市| 蒙山县| 麦盖提县| 柳河县| 绵阳市| 渭南市| 华宁县| 华池县| 宕昌县| 石屏县| 达州市| 江安县| 南丰县| 萝北县| 邯郸市| 宜川县| 甘南县| 墨竹工卡县| 攀枝花市| 曲麻莱县| 江口县| 长兴县|