找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Course in Homological Algebra; P. J. Hilton,U. Stammbach Textbook 19711st edition Springer Science+Business Media New York 1971 Category

[復制鏈接]
樓主: quick-relievers
11#
發(fā)表于 2025-3-23 11:53:35 | 只看該作者
https://doi.org/10.1007/978-1-4684-9936-0Category theory; Cohomology; Homological algebra; Lie; Topology; algebra; mathematics
12#
發(fā)表于 2025-3-23 14:34:04 | 只看該作者
Springer Science+Business Media New York 1971
13#
發(fā)表于 2025-3-23 18:22:43 | 只看該作者
14#
發(fā)表于 2025-3-24 00:22:54 | 只看該作者
African Security Politics RedefinedThe algebraic categories with which we shall be principally concerned in this book are categories of modules over a fixed (unitary) ring . and module-homomorphisms. Thus we devote this chapter to a preliminary discussion of .modules.
15#
發(fā)表于 2025-3-24 05:21:00 | 只看該作者
16#
發(fā)表于 2025-3-24 06:32:55 | 只看該作者
17#
發(fā)表于 2025-3-24 11:56:58 | 只看該作者
18#
發(fā)表于 2025-3-24 15:08:06 | 只看該作者
https://doi.org/10.1007/978-3-031-57394-1ct group . over the integers. This will lead us to a definition of cohomology groups ... and homology groups ..., . ≧ 0, where . is a left and . a right .-module (we speak of “.-modules” instead of “?.-modules”). In developing the theory we shall attempt to deduce as much as possible from general pr
19#
發(fā)表于 2025-3-24 22:16:45 | 只看該作者
Labour: Obstacles and Opportunitiesuniversal enveloping algebra .g and define cohomology groups ..(g .) for every (left) g-module ., by regarding . as a .g-module. In Sections 1 through 4 we will proceed in a way parallel to that adopted in Chapter VI in presenting the cohomology theory of groups. We therefore allow ourselves in thos
20#
發(fā)表于 2025-3-25 00:59:16 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 00:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
大邑县| 全椒县| 伊宁市| 江都市| SHOW| 普定县| 原阳县| 信宜市| 瑞安市| 延川县| 兰溪市| 遵义县| 托克托县| 仁布县| 栖霞市| 任丘市| 谷城县| 保亭| 明光市| 勃利县| 同仁县| 土默特右旗| 全南县| 邻水| 九龙城区| 福鼎市| 海丰县| 白朗县| 唐河县| 扶风县| 斗六市| 微博| 丰都县| 修文县| 宾川县| 伊宁市| 江津市| 宜兴市| 宁都县| 肥西县| 池州市|