找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Contrario Line Segment Detection; Rafael Grompone von Gioi Book 2014 The Author(s) 2014 A contrario framework.LSD algorithm.NFA approach

[復制鏈接]
樓主: 代表
11#
發(fā)表于 2025-3-23 10:00:38 | 只看該作者
Beate Ochsner,Sybilla Nikolow,Robert StockThis chapter describes in full detail the LSD algorithm [31, 35, 36] for line segment detection. It is based on the . framework described in the previous chapter, but instead of searching exhaustively for line segments, it uses the . approach, resulting in an efficient algorithm. The source code and an online demo for LSD are available at [36].
12#
發(fā)表于 2025-3-23 15:42:48 | 只看該作者
Erhard Schüttpelz,Beate Ochsner,Robert StockThis chapter presents some experiments to illustrate the behavior of the . line segment detector, indicating the good properties as well as its shortcomings. The results are compared with some existing approaches, concluding with an empirical evaluation of the algorithm computational time.
13#
發(fā)表于 2025-3-23 19:44:17 | 只看該作者
Fleisch – Wandlung, Wachstum, ZüchtungThe motivation for this ambitious project was to provide a foundation for computer vision based, like the Gestalt theory [46, 51, 61, 62], on a small set of fundamental principles. They identified the lack of a principle to guide the selection of detection thresholds and their main contribution was
14#
發(fā)表于 2025-3-23 23:31:22 | 只看該作者
15#
發(fā)表于 2025-3-24 02:54:13 | 只看該作者
https://doi.org/10.1007/978-1-4939-0575-1A contrario framework; LSD algorithm; NFA approach; parameter tuning; parameterless
16#
發(fā)表于 2025-3-24 06:32:13 | 只看該作者
2191-5768 od and bad results are illustrated on real and synthetic images. The issues involved, as well as the strategies used, are common to many geometrical structure detection problems and some possible extensions are discussed.978-1-4939-0574-4978-1-4939-0575-1Series ISSN 2191-5768 Series E-ISSN 2191-5776
17#
發(fā)表于 2025-3-24 13:23:00 | 只看該作者
Book 2014thout the need of any parameter tuning. The design criteria are thoroughly explained and the algorithm‘s good and bad results are illustrated on real and synthetic images. The issues involved, as well as the strategies used, are common to many geometrical structure detection problems and some possible extensions are discussed.
18#
發(fā)表于 2025-3-24 17:57:04 | 只看該作者
19#
發(fā)表于 2025-3-24 22:30:45 | 只看該作者
2191-5768 sion. This?book leads a detailed tour through the LSD algorithm, a line segment detector designed to be fully automatic. Based on the .a contrario. framework, the algorithm works efficiently without the need of any parameter tuning. The design criteria are thoroughly explained and the algorithm‘s go
20#
發(fā)表于 2025-3-25 01:09:05 | 只看該作者
Fleisch – Wandlung, Wachstum, Züchtungset of fundamental principles. They identified the lack of a principle to guide the selection of detection thresholds and their main contribution was to propose the . framework to cover this need. This chapter will introduce the . approach and its application to line segment detection.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 08:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
湖州市| 潜江市| 抚顺市| 禄劝| 通海县| 汝南县| 岑溪市| 外汇| 炉霍县| 丹阳市| 蒙山县| 淮北市| 泉州市| 临潭县| 湾仔区| 玉林市| 尖扎县| 阜平县| 平利县| 拜城县| 丰都县| 汝州市| 涿州市| 西平县| 双城市| 肇东市| 汉阴县| 丹棱县| 台南县| 敦化市| 工布江达县| 平昌县| 依兰县| 周口市| 曲阜市| 当阳市| 延长县| 句容市| 仁怀市| 鞍山市| 七台河市|