找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Concise Approach to Mathematical Analysis; Mangatiana A. Robdera Textbook 2003 Springer-Verlag London Limited 2003 Advanced calculus.Der

[復(fù)制鏈接]
樓主: Indigent
11#
發(fā)表于 2025-3-23 12:10:30 | 只看該作者
eir degree - who wish to specialise in pure and applied mathematics, but it will also prove useful to students of physics, engineering and computer science who also use advanced mathematical techniques.978-1-85233-552-6978-0-85729-347-3
12#
發(fā)表于 2025-3-23 17:02:21 | 只看該作者
Mangatiana A. RobderaIntroduces the student to the more abstract concepts of advanced calculus.Each topic begins with a brief introduction followed by detailed examples.A selection of carefully-chosen exercises gives stud
13#
發(fā)表于 2025-3-23 18:46:42 | 只看該作者
http://image.papertrans.cn/a/image/140353.jpg
14#
發(fā)表于 2025-3-23 22:31:14 | 只看該作者
15#
發(fā)表于 2025-3-24 03:48:36 | 只看該作者
https://doi.org/10.1007/978-3-642-54168-1of sequences, continuity and differentiability of functions, are all defined locally around some given point. In this chapter, we shall study ? further by considering its features locally around each of its points. The generalization of such an approach to a more abstract setting is of great importa
16#
發(fā)表于 2025-3-24 08:01:34 | 只看該作者
17#
發(fā)表于 2025-3-24 12:41:18 | 只看該作者
18#
發(fā)表于 2025-3-24 17:06:12 | 只看該作者
Chapter 2. Atmospheric entry problem,Functions whose domains are subsets of the integers present particularly important and interesting features. The argument of such functions does not take on values in a . but rather in a . manner.
19#
發(fā)表于 2025-3-24 19:30:49 | 只看該作者
20#
發(fā)表于 2025-3-25 02:54:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 21:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
白朗县| 金川县| 临夏市| 扬州市| 黔西| 金湖县| 内江市| 永春县| 东城区| 扬州市| 东宁县| 湖州市| 湖北省| 安新县| 牡丹江市| 上思县| 广东省| 安庆市| 句容市| 通州市| 孙吴县| 黄平县| 宜黄县| 阿克陶县| 墨江| 伊金霍洛旗| 岗巴县| 垦利县| 宽甸| 德保县| 海城市| 蒲城县| 平潭县| 满城县| 湖南省| 米林县| 黄骅市| 宜都市| 喀什市| 钟山县| 通海县|