找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Complex Analysis Problem Book; Daniel Alpay Textbook 2016Latest edition Springer International Publishing AG 2016 analytic function.Cauc

[復(fù)制鏈接]
樓主: expenditure
21#
發(fā)表于 2025-3-25 06:54:10 | 只看該作者
22#
發(fā)表于 2025-3-25 09:01:30 | 只看該作者
Berhanu Abnet Mengstie,Eden Aragaw Addisuite integrals such as the Fresnel integrals. In that chapter no residues are computed. The approach in the present chapter is different. The main player is the residue theorem. There are numerous kinds of definite integrals which one can compute using this theorem, and in the present chapter we do not try to be exhaustive.
23#
發(fā)表于 2025-3-25 12:32:42 | 只看該作者
https://doi.org/10.1007/978-3-319-69811-3heme: How to interchange two operations in analysis (for instance order of integration in a double integral, integration of a function depending on a parameter and derivation with respect to this parameter,. . . ).
24#
發(fā)表于 2025-3-25 15:49:35 | 只看該作者
Tesfaye Kassaw Bedru,Beteley Tekola MesheshaThis first chapter has essentially an algebraic flavor. The exercises use elementary properties of the complex numbers. A first definition of the exponential function is given, and we also meet Blaschke factors. These will appear in a number of other places in the book, and are key players in more advanced courses on complex analysis.
25#
發(fā)表于 2025-3-25 23:15:54 | 只看該作者
26#
發(fā)表于 2025-3-26 01:43:02 | 只看該作者
Advances of Science and TechnologyIn this chapter we present exercises on .-differentiable functions and the Cauchy-Riemann equations. We begin with exercises related to continuity in Section 4.1. We then study derivatives.
27#
發(fā)表于 2025-3-26 07:06:26 | 只看該作者
https://doi.org/10.1007/978-3-030-80621-7In this chapter we need the simplest version of Cauchy’s theorem, and not the homological or homotopic versions. Furthermore, in the computations of Section 5.1, the weaker form of Cauchy’s theorem proved using Green’s theorem is enough.
28#
發(fā)表于 2025-3-26 11:39:28 | 只看該作者
Megersa Lemma,Ramesh Babu NallamothuThis is called Riemann’s removable singularity theorem (also known by its German name Riemann’s Hebbarkeitssatz) and its proof follows from the proof of Cauchy’s theorem.
29#
發(fā)表于 2025-3-26 13:22:02 | 只看該作者
30#
發(fā)表于 2025-3-26 19:31:29 | 只看該作者
Advances of Science and TechnologyRiemann’s mapping theorem asserts that a simply-connected domain different from . is conformally equivalent to the open unit disk: There exists an analytic bijection from Ω onto . (that the inverse is itself analytic is automatic; see Exercise 10.2.4).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 05:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
定州市| 新密市| 三都| 松潘县| 剑阁县| 鞍山市| 陆丰市| 会泽县| 福海县| 彰化县| 安丘市| 桂林市| 江永县| 连州市| 广水市| 钦州市| 伊宁县| 兴文县| 古丈县| 屏东市| 武定县| 新野县| 大余县| 扶余县| 墨竹工卡县| 福泉市| 商城县| 邯郸市| 揭西县| 福海县| 和林格尔县| 石家庄市| 会泽县| 阿坝| 集贤县| 清新县| 年辖:市辖区| 安仁县| 玛多县| 霍邱县| 台山市|