找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Combinatorial Perspective on Quantum Field Theory; Karen Yeats Book 2017 The Author(s) 2017 Dyson-Schwinger equations.graph theory.Feynm

[復(fù)制鏈接]
樓主: 櫥柜
11#
發(fā)表于 2025-3-23 12:58:56 | 只看該作者
12#
發(fā)表于 2025-3-23 16:25:26 | 只看該作者
Combinatorial Aspects of Some Integration Algorithmstung der Ergebnisformeln so ausführlich gehalten, dass sie sofort nachvollzogen und ohne eigene Zwischenrechnungen verstanden w- den kann. Dem Studierenden wird es somit erm?glicht, sich auf die dargestellten physika- schen Zusammenh?nge und vor allem auf978-3-8348-9246-1
13#
發(fā)表于 2025-3-23 20:10:44 | 只看該作者
https://doi.org/10.1007/978-3-319-47551-6Dyson-Schwinger equations; graph theory; Feynman graphs; Feynman periods; Connes-Kreimer Hopf algebra; Sc
14#
發(fā)表于 2025-3-24 01:07:27 | 只看該作者
Bhupesh Aneja,Kanchan Sharma,Amita Rana other hand, from the physics side, too often combinatorics is viewed as a kind of uninteresting messy detail. However, there is actually a lot of beautiful and useful combinatorics in quantum field theory, and the discrete structures illuminate the physical structure. Neither side is necessarily we
15#
發(fā)表于 2025-3-24 05:26:24 | 只看該作者
16#
發(fā)表于 2025-3-24 07:06:08 | 只看該作者
17#
發(fā)表于 2025-3-24 12:59:35 | 只看該作者
18#
發(fā)表于 2025-3-24 15:27:20 | 只看該作者
https://doi.org/10.1007/978-3-319-78075-7hysically relevant situations. We will, however, be sticking to the single scale case as one sees in propagator insertions. We still want to have combinatorial control over the answer and so the first step is to rewrite the analytic Dyson-Schwinger equation so as to unwind the analytic side from the
19#
發(fā)表于 2025-3-24 19:49:48 | 只看該作者
Advances in Systematic Creativityexpansions but we want functions. What can we hope to do? First we can ask about asymptotics for the coefficients of our expansions. Another thing we can do is to think again about how the expansion is indexed and use that to break it up in a different way.
20#
發(fā)表于 2025-3-25 01:25:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 23:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沾化县| 纳雍县| 永年县| 辉县市| 谷城县| 新密市| 嘉峪关市| 东明县| 雷山县| 左云县| 含山县| 库尔勒市| 乐昌市| 福鼎市| 淮安市| 如皋市| 平邑县| 中江县| 绵竹市| 康定县| 浦城县| 西乡县| 贺州市| 梓潼县| 宜都市| 临汾市| 洪湖市| 赤壁市| 咸宁市| 饶平县| 宜阳县| 尼勒克县| 繁昌县| 佛山市| 唐海县| 繁峙县| 沛县| 河东区| 博客| 阿尔山市| 新巴尔虎左旗|