找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Calculus for Factorial Arrangements; Sudhir Gupta,Rahul Mukerjee Book 1989 Springer-Verlag Berlin Heidelberg 1989 Mathematica.calculus.c

[復(fù)制鏈接]
查看: 55676|回復(fù): 44
樓主
發(fā)表于 2025-3-21 17:44:41 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱A Calculus for Factorial Arrangements
影響因子2023Sudhir Gupta,Rahul Mukerjee
視頻videohttp://file.papertrans.cn/141/140135/140135.mp4
學(xué)科分類Lecture Notes in Statistics
圖書封面Titlebook: A Calculus for Factorial Arrangements;  Sudhir Gupta,Rahul Mukerjee Book 1989 Springer-Verlag Berlin Heidelberg 1989 Mathematica.calculus.c
影響因子Factorial designs were introduced and popularized by Fisher (1935). Among the early authors, Yates (1937) considered both symmetric and asymmetric factorial designs. Bose and Kishen (1940) and Bose (1947) developed a mathematical theory for symmetric priIi‘t&-powered factorials while Nair and Roo (1941, 1942, 1948) introduced and explored balanced confounded designs for the asymmetric case. Since then, over the last four decades, there has been a rapid growth of research in factorial designs and a considerable interest is still continuing. Kurkjian and Zelen (1962, 1963) introduced a tensor calculus for factorial arrangements which, as pointed out by Federer (1980), represents a powerful statistical analytic tool in the context of factorial designs. Kurkjian and Zelen (1963) gave the analysis of block designs using the calculus and Zelen and Federer (1964) applied it to the analysis of designs with two-way elimination of heterogeneity. Zelen and Federer (1965) used the calculus for the analysis of designs having several classifications with unequal replications, no empty cells and with all the interactions present. Federer and Zelen (1966) considered applications of the calculus fo
Pindex Book 1989
The information of publication is updating

書目名稱A Calculus for Factorial Arrangements影響因子(影響力)




書目名稱A Calculus for Factorial Arrangements影響因子(影響力)學(xué)科排名




書目名稱A Calculus for Factorial Arrangements網(wǎng)絡(luò)公開度




書目名稱A Calculus for Factorial Arrangements網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱A Calculus for Factorial Arrangements被引頻次




書目名稱A Calculus for Factorial Arrangements被引頻次學(xué)科排名




書目名稱A Calculus for Factorial Arrangements年度引用




書目名稱A Calculus for Factorial Arrangements年度引用學(xué)科排名




書目名稱A Calculus for Factorial Arrangements讀者反饋




書目名稱A Calculus for Factorial Arrangements讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:07:26 | 只看該作者
https://doi.org/10.1007/978-3-030-11969-01 (1 ≤ . ≤ .). A typical selection of levels . = (.,.,..., .), 0 ≤; . ≤ ., ? 1, 1 ≤ . ≤ ., will be termed the jth treatment combination and the effect due to this treatment combination will be denoted by τ(.,.,..., .).
板凳
發(fā)表于 2025-3-22 03:07:21 | 只看該作者
地板
發(fā)表于 2025-3-22 08:09:37 | 只看該作者
5#
發(fā)表于 2025-3-22 10:57:09 | 只看該作者
6#
發(fā)表于 2025-3-22 14:35:19 | 只看該作者
https://doi.org/10.1007/978-3-642-37509-5characterization for OFS as in Theorem 4.2.1 intrinsically involves Kronecker products, it is also appropriate to consider methods of construction based on Kronecker or Kronecker- type products of varietal designs. Such methods also lead to a wide variety of designs with OFS and, if appropriately us
7#
發(fā)表于 2025-3-22 20:34:20 | 只看該作者
8#
發(fā)表于 2025-3-22 23:56:05 | 只看該作者
9#
發(fā)表于 2025-3-23 05:08:02 | 只看該作者
Lecture Notes in Statisticshttp://image.papertrans.cn/a/image/140135.jpg
10#
發(fā)表于 2025-3-23 08:05:13 | 只看該作者
A Calculus for Factorial Arrangements978-1-4419-8730-3Series ISSN 0930-0325 Series E-ISSN 2197-7186
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 09:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沙坪坝区| 鸡泽县| 平顶山市| 上思县| 周口市| 龙游县| 连平县| 喀喇| 定襄县| 井冈山市| 岑溪市| 安龙县| 永登县| 大石桥市| 弥勒县| 海晏县| 呼玛县| 扎囊县| 平武县| 金阳县| 乐业县| 北京市| 山阳县| 视频| 永宁县| 会泽县| 偃师市| 龙岩市| 迁安市| 克拉玛依市| 吴江市| 东城区| 铜陵市| 察雅县| 青田县| 个旧市| 依安县| 乡城县| 榕江县| 汉阴县| 龙里县|