找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Branch-and-Bound Algorithm for Multiobjective Mixed-integer Convex Optimization; Stefan Rockt?schel Book 2020 Springer Fachmedien Wiesba

[復制鏈接]
查看: 11346|回復: 37
樓主
發(fā)表于 2025-3-21 18:11:36 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱A Branch-and-Bound Algorithm for Multiobjective Mixed-integer Convex Optimization
影響因子2023Stefan Rockt?schel
視頻videohttp://file.papertrans.cn/141/140075/140075.mp4
發(fā)行地址First algorithm for solving multiobjective mixed-integer convex optimization problems
學科分類BestMasters
圖書封面Titlebook: A Branch-and-Bound Algorithm for Multiobjective Mixed-integer Convex Optimization;  Stefan Rockt?schel Book 2020 Springer Fachmedien Wiesba
影響因子Stefan Rockt?schel introduces a branch-and-bound algorithm that determines a cover of the efficient set of multiobjective mixed-integer convex optimization problems. He examines particular steps of this algorithm in detail and enhances the basic algorithm with additional modifications that ensure a more precise cover of the efficient set. Finally, he gives numerical results on some test instances.
Pindex Book 2020
The information of publication is updating

書目名稱A Branch-and-Bound Algorithm for Multiobjective Mixed-integer Convex Optimization影響因子(影響力)




書目名稱A Branch-and-Bound Algorithm for Multiobjective Mixed-integer Convex Optimization影響因子(影響力)學科排名




書目名稱A Branch-and-Bound Algorithm for Multiobjective Mixed-integer Convex Optimization網絡公開度




書目名稱A Branch-and-Bound Algorithm for Multiobjective Mixed-integer Convex Optimization網絡公開度學科排名




書目名稱A Branch-and-Bound Algorithm for Multiobjective Mixed-integer Convex Optimization被引頻次




書目名稱A Branch-and-Bound Algorithm for Multiobjective Mixed-integer Convex Optimization被引頻次學科排名




書目名稱A Branch-and-Bound Algorithm for Multiobjective Mixed-integer Convex Optimization年度引用




書目名稱A Branch-and-Bound Algorithm for Multiobjective Mixed-integer Convex Optimization年度引用學科排名




書目名稱A Branch-and-Bound Algorithm for Multiobjective Mixed-integer Convex Optimization讀者反饋




書目名稱A Branch-and-Bound Algorithm for Multiobjective Mixed-integer Convex Optimization讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:19:35 | 只看該作者
Expectations in Human-Robot Interactionity location problem studied by Günlük, Lee, Weismantel [9], where integer variables are used to model the decision for a facility, whether it should be built or not. Additionally, there are continuous variables which state the percentage of the respective customers’ demands which is met by any give
板凳
發(fā)表于 2025-3-22 01:32:29 | 只看該作者
Expectations in Human-Robot Interaction multiobjective optimization problems. Based on this, we formulate the central optimization problem that we study throughout this book and introduce a relaxed optimization problem that we use in order to solve the central optimization problem.
地板
發(fā)表于 2025-3-22 05:47:48 | 只看該作者
5#
發(fā)表于 2025-3-22 11:53:27 | 只看該作者
6#
發(fā)表于 2025-3-22 15:30:49 | 只看該作者
Lecture Notes in Networks and SystemsIn this chapter, we introduce a basic algorithm for computing a ’good’ cover of the efficient set of (MOMICP). The algorithm illustrates the basic procedure that we use. The idea of this Branch-and-Bound algorithm is to iteratively split the initial box . into smaller subboxes and derive lower and upper bounds for respective subproblems.
7#
發(fā)表于 2025-3-22 21:08:13 | 只看該作者
https://doi.org/10.1007/978-3-319-94866-9In this chapter, we introduce modifications that enhance the basic Branch-and-Bound algorithm for (MOMICP), we introduced in Chapter 3. We follow different goals with these modifications. We would like to reduce the amount of computational time, the algorithm requires, as well as provide a ’better’ cover of the efficient set of (MOMICP).
8#
發(fā)表于 2025-3-22 22:15:47 | 只看該作者
9#
發(fā)表于 2025-3-23 01:29:42 | 只看該作者
Young-A Suh,Jung Hwan Kim,Man-Sung YimIn this Chapter, we discuss an extension of the proposed algorithm to the nonconvex case. Therefore, we introduce the concept of convex underestimators. As we have seen in Example 2.13, the assumption of convexity of . and . for (MOMICP) in Assumption 2.9 can be very restricting.
10#
發(fā)表于 2025-3-23 06:41:20 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-22 06:23
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
临洮县| 淮北市| 阳信县| 亳州市| 沧州市| 莲花县| 文安县| 清河县| 乌拉特中旗| 枣庄市| 留坝县| 边坝县| 平度市| 鹤岗市| 钟祥市| 大英县| 定襄县| 阳谷县| 崇信县| 永登县| 喀喇沁旗| 读书| 上虞市| 博爱县| 马鞍山市| 象州县| 菏泽市| 阜宁县| 郎溪县| 葫芦岛市| 禹城市| 咸宁市| 钟祥市| 定日县| 蓬溪县| 台中县| 乐都县| 荆州市| 金昌市| 松溪县| 休宁县|