找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Birman-Schwinger Principle in Galactic Dynamics; Markus Kunze Book 2021 The Editor(s) (if applicable) and The Author(s), under exclusive

[復制鏈接]
查看: 41791|回復: 35
樓主
發(fā)表于 2025-3-21 16:21:31 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱A Birman-Schwinger Principle in Galactic Dynamics
影響因子2023Markus Kunze
視頻videohttp://file.papertrans.cn/141/140062/140062.mp4
發(fā)行地址Connects a mathematical principle used in quantum mechanics to the study of steady state solutions in galactic dynamics.Presents a novel result in great detail.Includes appendices that cover necessary
學科分類Progress in Mathematical Physics
圖書封面Titlebook: A Birman-Schwinger Principle in Galactic Dynamics;  Markus Kunze Book 2021 The Editor(s) (if applicable) and The Author(s), under exclusive
影響因子This monograph develops an innovative approach that utilizes the Birman-Schwinger principle from quantum mechanics to investigate stability properties of steady state solutions in galactic dynamics.? The opening chapters lay the framework for the main result through detailed treatments of nonrelativistic galactic dynamics and the Vlasov-Poisson system, the Antonov stability estimate, and the period function $T_1$.? Then, as the main application, the Birman-Schwinger type principle is used to characterize in which cases the “best constant” in the Antonov stability estimate is attained.? The final two chapters consider the relation to the Guo-Lin operator and invariance properties for the Vlasov-Poisson system, respectively.? Several appendices are also included that cover necessary background material, such as spherically symmetric models, action-angle variables, relevant function spaces and operators, and some aspects of Kato-Rellich perturbation theory.??.A Birman-Schwinger Principle in Galactic Dynamics. will be of interest to researchers in galactic dynamics, kinetic theory, and various aspects of quantum mechanics, as well as those in related areas of mathematical physics and a
Pindex Book 2021
The information of publication is updating

書目名稱A Birman-Schwinger Principle in Galactic Dynamics影響因子(影響力)




書目名稱A Birman-Schwinger Principle in Galactic Dynamics影響因子(影響力)學科排名




書目名稱A Birman-Schwinger Principle in Galactic Dynamics網(wǎng)絡公開度




書目名稱A Birman-Schwinger Principle in Galactic Dynamics網(wǎng)絡公開度學科排名




書目名稱A Birman-Schwinger Principle in Galactic Dynamics被引頻次




書目名稱A Birman-Schwinger Principle in Galactic Dynamics被引頻次學科排名




書目名稱A Birman-Schwinger Principle in Galactic Dynamics年度引用




書目名稱A Birman-Schwinger Principle in Galactic Dynamics年度引用學科排名




書目名稱A Birman-Schwinger Principle in Galactic Dynamics讀者反饋




書目名稱A Birman-Schwinger Principle in Galactic Dynamics讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:58:29 | 只看該作者
Book 2021and operators, and some aspects of Kato-Rellich perturbation theory.??.A Birman-Schwinger Principle in Galactic Dynamics. will be of interest to researchers in galactic dynamics, kinetic theory, and various aspects of quantum mechanics, as well as those in related areas of mathematical physics and a
板凳
發(fā)表于 2025-3-22 00:48:46 | 只看該作者
1544-9998 ult in great detail.Includes appendices that cover necessaryThis monograph develops an innovative approach that utilizes the Birman-Schwinger principle from quantum mechanics to investigate stability properties of steady state solutions in galactic dynamics.? The opening chapters lay the framework f
地板
發(fā)表于 2025-3-22 07:33:50 | 只看該作者
5#
發(fā)表于 2025-3-22 11:38:07 | 只看該作者
6#
發(fā)表于 2025-3-22 14:31:44 | 只看該作者
Progress in Mathematical Physicshttp://image.papertrans.cn/a/image/140062.jpg
7#
發(fā)表于 2025-3-22 20:37:34 | 只看該作者
8#
發(fā)表于 2025-3-22 23:57:51 | 只看該作者
https://doi.org/10.1007/978-3-030-75186-9Galactic Dynamics; Birman-Schwinger Principle; Antonov Stability Estimate; Steady State Solutions in Ga
9#
發(fā)表于 2025-3-23 04:05:37 | 只看該作者
978-3-030-75188-3The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
10#
發(fā)表于 2025-3-23 09:24:44 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 12:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
庆元县| 麻江县| 定结县| 德州市| 寻甸| 广南县| 茂名市| 盘锦市| 闵行区| 略阳县| 遂川县| 子洲县| 大田县| 彭山县| 神池县| 义马市| 湘阴县| 黄大仙区| 江永县| 丰城市| 金沙县| 诏安县| 都江堰市| 屯留县| 郑州市| 日喀则市| 瑞金市| 南丹县| 门头沟区| 池州市| 庆阳市| 新巴尔虎左旗| 思茅市| 陈巴尔虎旗| 南京市| 肥西县| 曲沃县| 马鞍山市| 济宁市| 石首市| 昆明市|