找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Z User Workshop, York 1991; Proceedings of the S J. E. Nicholls Conference proceedings 1992 British Computer Society 1992 calculus.database

[復(fù)制鏈接]
查看: 10618|回復(fù): 34
樓主
發(fā)表于 2025-3-21 18:56:15 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Z User Workshop, York 1991
副標(biāo)題Proceedings of the S
編輯J. E. Nicholls
視頻videohttp://file.papertrans.cn/1061/1060385/1060385.mp4
叢書名稱Workshops in Computing
圖書封面Titlebook: Z User Workshop, York 1991; Proceedings of the S J. E. Nicholls Conference proceedings 1992 British Computer Society 1992 calculus.database
描述In ordinary mathematics, an equation can be written down which is syntactically correct, but for which no solution exists. For example, consider the equation x = x + 1 defined over the real numbers; there is no value of x which satisfies it. Similarly it is possible to specify objects using the formal specification language Z [3,4], which can not possibly exist. Such specifications are called inconsistent and can arise in a number of ways. Example 1 The following Z specification of a functionf, from integers to integers "f x : ~ 1 x ~ O· fx = x + 1 (i) "f x : ~ 1 x ~ O· fx = x + 2 (ii) is inconsistent, because axiom (i) gives f 0 = 1, while axiom (ii) gives f 0 = 2. This contradicts the fact that f was declared as a function, that is, f must have a unique result when applied to an argument. Hence no suchfexists. Furthermore, iff 0 = 1 andfO = 2 then 1 = 2 can be deduced! From 1 = 2 anything can be deduced, thus showing the danger of an inconsistent specification. Note that all examples and proofs start with the word Example or Proof and end with the symbol.1.
出版日期Conference proceedings 1992
關(guān)鍵詞calculus; database; formal method; formal methods; high-integrity software; logic; programming; structured
版次1
doihttps://doi.org/10.1007/978-1-4471-3203-5
isbn_softcover978-3-540-19780-5
isbn_ebook978-1-4471-3203-5Series ISSN 1431-1682
issn_series 1431-1682
copyrightBritish Computer Society 1992
The information of publication is updating

書目名稱Z User Workshop, York 1991影響因子(影響力)




書目名稱Z User Workshop, York 1991影響因子(影響力)學(xué)科排名




書目名稱Z User Workshop, York 1991網(wǎng)絡(luò)公開度




書目名稱Z User Workshop, York 1991網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Z User Workshop, York 1991被引頻次




書目名稱Z User Workshop, York 1991被引頻次學(xué)科排名




書目名稱Z User Workshop, York 1991年度引用




書目名稱Z User Workshop, York 1991年度引用學(xué)科排名




書目名稱Z User Workshop, York 1991讀者反饋




書目名稱Z User Workshop, York 1991讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:04:04 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:11:41 | 只看該作者
Workshops in Computinghttp://image.papertrans.cn/xyz/image/1060385.jpg
地板
發(fā)表于 2025-3-22 05:04:39 | 只看該作者
5#
發(fā)表于 2025-3-22 11:22:26 | 只看該作者
Conference proceedings 1992t have a unique result when applied to an argument. Hence no suchfexists. Furthermore, iff 0 = 1 andfO = 2 then 1 = 2 can be deduced! From 1 = 2 anything can be deduced, thus showing the danger of an inconsistent specification. Note that all examples and proofs start with the word Example or Proof and end with the symbol.1.
6#
發(fā)表于 2025-3-22 13:40:05 | 只看該作者
7#
發(fā)表于 2025-3-22 17:29:59 | 只看該作者
8#
發(fā)表于 2025-3-23 00:20:29 | 只看該作者
9#
發(fā)表于 2025-3-23 05:11:59 | 只看該作者
10#
發(fā)表于 2025-3-23 09:23:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 05:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嘉义县| 金塔县| 班戈县| 泸溪县| 西宁市| 镇宁| 柞水县| 尤溪县| 阿克| 右玉县| 宜川县| 武乡县| 肃宁县| 长春市| 修水县| 海丰县| 平昌县| 夏河县| 色达县| 临清市| 保康县| 金堂县| 郧西县| 上栗县| 静安区| 察哈| 广南县| 庆元县| 河津市| 南岸区| 大庆市| 永州市| 右玉县| 泰顺县| 昭通市| 库伦旗| 喀喇沁旗| 三明市| 桐柏县| 左贡县| 竹北市|