找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Yang–Baxter Deformation of 2D Non-Linear Sigma Models; Towards Applications Kentaroh Yoshida Book 2021 The Author(s), under exclusive licen

[復(fù)制鏈接]
查看: 18542|回復(fù): 34
樓主
發(fā)表于 2025-3-21 19:41:00 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Yang–Baxter Deformation of 2D Non-Linear Sigma Models
副標題Towards Applications
編輯Kentaroh Yoshida
視頻videohttp://file.papertrans.cn/1061/1060191/1060191.mp4
概述Introduces a new method called Yang–Baxter deformation to perform integrable deformations systematically.Presents very recent progress in this method, not found in any similar book.Begins with the bas
叢書名稱SpringerBriefs in Mathematical Physics
圖書封面Titlebook: Yang–Baxter Deformation of 2D Non-Linear Sigma Models; Towards Applications Kentaroh Yoshida Book 2021 The Author(s), under exclusive licen
描述In mathematical physics, one of the fascinating issues is the study of integrable systems. In particular, non-perturbative techniques that have been developed have triggered significant insight for real physics. There are basically two notions of integrability:? classical integrability and? quantum integrability. In this book, the focus is on the former, classical integrability. When the system has a finite number of degrees of freedom, it has been well captured by the Arnold–Liouville theorem. However, when the number of degrees of freedom is infinite, as in classical field theories, the integrable structure is enriched profoundly. In fact, the study of classically integrable field theories has a long history and various kinds of techniques, including the classical inverse scattering method, which have been developed so far. In previously published books, these techniques have been collected and well described and are easy to find in traditional, standard textbooks.?.One of the intriguing subjects in classically integrable systems is the investigation of deformations preserving integrability. Usually, it is not considered systematic to perform such a deformation, and one must stud
出版日期Book 2021
關(guān)鍵詞Classical integrability; Yang-Baxter equation; Classical r-matrix; Lax pair; Non-linear sigma model; part
版次1
doihttps://doi.org/10.1007/978-981-16-1703-4
isbn_softcover978-981-16-1702-7
isbn_ebook978-981-16-1703-4Series ISSN 2197-1757 Series E-ISSN 2197-1765
issn_series 2197-1757
copyrightThe Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
The information of publication is updating

書目名稱Yang–Baxter Deformation of 2D Non-Linear Sigma Models影響因子(影響力)




書目名稱Yang–Baxter Deformation of 2D Non-Linear Sigma Models影響因子(影響力)學(xué)科排名




書目名稱Yang–Baxter Deformation of 2D Non-Linear Sigma Models網(wǎng)絡(luò)公開度




書目名稱Yang–Baxter Deformation of 2D Non-Linear Sigma Models網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Yang–Baxter Deformation of 2D Non-Linear Sigma Models被引頻次




書目名稱Yang–Baxter Deformation of 2D Non-Linear Sigma Models被引頻次學(xué)科排名




書目名稱Yang–Baxter Deformation of 2D Non-Linear Sigma Models年度引用




書目名稱Yang–Baxter Deformation of 2D Non-Linear Sigma Models年度引用學(xué)科排名




書目名稱Yang–Baxter Deformation of 2D Non-Linear Sigma Models讀者反饋




書目名稱Yang–Baxter Deformation of 2D Non-Linear Sigma Models讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:39:09 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:09:10 | 只看該作者
地板
發(fā)表于 2025-3-22 06:59:11 | 只看該作者
Book 2021eveloped have triggered significant insight for real physics. There are basically two notions of integrability:? classical integrability and? quantum integrability. In this book, the focus is on the former, classical integrability. When the system has a finite number of degrees of freedom, it has be
5#
發(fā)表于 2025-3-22 10:57:45 | 只看該作者
6#
發(fā)表于 2025-3-22 16:12:29 | 只看該作者
7#
發(fā)表于 2025-3-22 18:37:31 | 只看該作者
8#
發(fā)表于 2025-3-23 00:24:50 | 只看該作者
978-981-16-1702-7The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
9#
發(fā)表于 2025-3-23 02:20:34 | 只看該作者
Yang–Baxter Deformation of 2D Non-Linear Sigma Models978-981-16-1703-4Series ISSN 2197-1757 Series E-ISSN 2197-1765
10#
發(fā)表于 2025-3-23 08:15:36 | 只看該作者
Kentaroh YoshidaIntroduces a new method called Yang–Baxter deformation to perform integrable deformations systematically.Presents very recent progress in this method, not found in any similar book.Begins with the bas
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 20:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
襄樊市| 连南| 东明县| 比如县| 田阳县| 连城县| 大理市| 特克斯县| 密山市| 江安县| 仁寿县| 余庆县| 安宁市| 宜章县| 扶绥县| 宣恩县| 湖北省| 大余县| 神池县| 绥化市| 道真| 揭东县| 永兴县| 康保县| 偏关县| 奉节县| 桦川县| 沙湾县| 嫩江县| 阳朔县| 任丘市| 桑植县| 金秀| 固安县| 阿拉善盟| 通山县| 广水市| 三门峡市| 滕州市| 菏泽市| 襄樊市|