找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Worlds Out of Nothing; A Course in the Hist Jeremy Gray Textbook 2010 Springer-Verlag London Limited 2010 Euclid.Geometrie.Geometry.algebra

[復制鏈接]
樓主: Nixon
31#
發(fā)表于 2025-3-26 21:36:55 | 只看該作者
32#
發(fā)表于 2025-3-27 01:28:07 | 只看該作者
Lobachevskii,onsideration of the intrinsic differential geometry of the new geometry. This work is seldom described in recent histories of mathematics. Lobachevskii’s later, and better known, work in his . (1840) is compared with the treatment given by János Bolyai..Extract: a lengthy extract from the conclusion to Lobachevskii’s ..
33#
發(fā)表于 2025-3-27 08:27:03 | 只看該作者
34#
發(fā)表于 2025-3-27 09:46:06 | 只看該作者
35#
發(fā)表于 2025-3-27 15:57:50 | 只看該作者
36#
發(fā)表于 2025-3-27 18:16:45 | 只看該作者
Theorems in Projective Geometry,Poncelet had described. However, they are proved in a modern way, by reducing them to simple special cases and then using a mixture of elementary vector methods and theorems from elementary Euclidean geometry. The reductions use simple projective transformations, which leads to discussion of the ide
37#
發(fā)表于 2025-3-28 00:15:13 | 只看該作者
38#
發(fā)表于 2025-3-28 03:10:19 | 只看該作者
39#
發(fā)表于 2025-3-28 08:01:12 | 只看該作者
40#
發(fā)表于 2025-3-28 13:19:13 | 只看該作者
Euclidean Geometry, the Parallel Postulate, and the Work of Lambert and Legendre,es of Euclid’s . it lacks intuitive credibility, and many attempts were made to deduce it from the other postulates. We look at the ideas of Gerolamo Saccheri, who showed in 1733 that a geometry based on all of Euclid’s postulates except the parallel postulate must be one of at most three kinds, whi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 03:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
将乐县| 紫云| 霍邱县| 罗平县| 弥勒县| 尼木县| 漠河县| 霍城县| 屏东市| 郓城县| 梅州市| 上犹县| 卢氏县| 上蔡县| 南陵县| 茌平县| 常州市| 台湾省| 集贤县| 宁蒗| 荥阳市| 香格里拉县| 连州市| 临澧县| 临漳县| 永宁县| 泗阳县| 田东县| 兴和县| 邻水| 乌拉特后旗| 综艺| 宜阳县| 东乡县| 临夏市| 乌审旗| 阳曲县| 固镇县| 肇州县| 广宗县| 富宁县|