找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: World Archaeo-Geophysics; Integrated minimally Carmen Cuenca-Garcia,Andrei As?ndulesei,Kelsey M. Book‘‘‘‘‘‘‘‘ 2024 The Editor(s) (if appli

[復制鏈接]
樓主: 稀少
11#
發(fā)表于 2025-3-23 11:57:01 | 只看該作者
12#
發(fā)表于 2025-3-23 16:16:56 | 只看該作者
13#
發(fā)表于 2025-3-23 21:03:23 | 只看該作者
Tomasz Herbiched them as collections of simple closed curves that pairwise intersect in exactly two crossings. Grünbaum conjectured that the number of triangular cells . in digon-free arrangements of . pairwise intersecting pseudocircles is at least .. We present examples to disprove this conjecture. With a recur
14#
發(fā)表于 2025-3-24 01:19:24 | 只看該作者
ntersects itself. We analyze several characteristics of simple drawings of complete multipartite graphs: which pairs of edges cross, in which order they cross, and the cyclic order around vertices and crossings, respectively. We consider all possible combinations of how two drawings can share some c
15#
發(fā)表于 2025-3-24 04:27:27 | 只看該作者
Lucy Parker,Tom Richardson,Chloe Hunnisett,Kayt Armstrongity, orthogonality, and the complexity of the drawing during the morph. Necessarily drawings . and . must be equivalent, that is, there exists a homeomorphism of the plane that transforms . into .. Van Goethem and Verbeek use .(.) linear morphs, where . is the maximum complexity of the input drawing
16#
發(fā)表于 2025-3-24 08:27:41 | 只看該作者
Carmen Cuenca-Garcia,Andrei As?ndulesei,Kelsey M. This book is open access, which means that you have free and unlimited access.Provides a country-based state-of-the-art on the use of archaeo-geophysics.Contains overviews of cultural heritage (CH) ma
17#
發(fā)表于 2025-3-24 11:09:38 | 只看該作者
18#
發(fā)表于 2025-3-24 15:48:42 | 只看該作者
https://doi.org/10.1007/978-3-031-57900-4Open Access; archaeology; archaeo-geophysics; archaeological geophysics; archaeological research; COST Ac
19#
發(fā)表于 2025-3-24 22:04:11 | 只看該作者
20#
發(fā)表于 2025-3-25 02:26:30 | 只看該作者
World Archaeo-Geophysics978-3-031-57900-4Series ISSN 2625-8641 Series E-ISSN 2625-865X
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 03:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
临潭县| 鄂州市| 潞城市| 乡城县| 庄浪县| 璧山县| 兴国县| 新龙县| 杭锦后旗| 通道| 当雄县| 穆棱市| 安化县| 宝山区| 龙里县| 弋阳县| 龙里县| 丹寨县| 五华县| 伊吾县| 汾阳市| 东海县| 清河县| SHOW| 巴塘县| 泰安市| 舒城县| 九龙坡区| 青海省| 阿荣旗| 固安县| 万州区| 鄂州市| 龙胜| 富宁县| 塔河县| 景宁| 平乐县| 林口县| 平度市| 安仁县|